Human gait requires both haptic and visual feedback to generate and control rhythmic movements, and navigate environmental obstacles. Current lower extremity wearable exoskeletons that restore gait to individuals with paraplegia due to spinal cord injury rely completely on visual feedback to generate limited pre-programmed gait variations, and generally provide little control by the user over the gait cycle. As an alternative to this limitation, we propose user control of gait in real time using healthy upper extremities. This paper evaluates the feedback conditions required for the hands to generate complex rhythmic trajectories that resemble gait trajectories. This paper involved 18 subjects who performed a virtual locomotor task, where contralateral hand movements were mapped to control virtual feet in three feedback conditions: haptic only, visual only, and haptic and visual. The results indicate that haptic feedback in addition to visual feedback is required to produce rhythmic hand trajectories similar to gait trajectories.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TNSRE.2017.2726538DOI Listing

Publication Analysis

Top Keywords

haptic visual
12
visual feedback
12
gait
8
feedback generate
8
feedback conditions
8
gait trajectories
8
feedback
6
visual
5
haptics generating
4
generating exoskeleton
4

Similar Publications

Perceiving the size of a visual object requires the combination of various sources of visual information. A recent paper by Kim et al. (Body Orientation Affects the Perceived Size of Objects.

View Article and Find Full Text PDF

Purpose: To evaluate dynamic changes in ciliary parameters and Implantable Collamer Lens V4C (ICL) (STAAR Surgical) haptic position using mydriatic and miotic agents and their effects on the central and peripheral vault.

Methods: This study involved 80 eyes from 40 consecutive patients (mean age: 28.05 years; range: 19 to 42 years) examined 3 months after ICL implantation.

View Article and Find Full Text PDF

Research into new solutions for wearable assistive devices for the visually impaired is an important area of assistive technology (AT). This plays a crucial role in improving the functionality and independence of the visually impaired, helping them to participate fully in their daily lives and in various community activities. This study presents a bibliometric analysis of the literature published over the last decade on wearable assistive devices for the visually impaired, retrieved from the Web of Science Core Collection (WoSCC) using CiteSpace, to provide an overview of the current state of research, trends, and hotspots in the field.

View Article and Find Full Text PDF

Design and Evaluation of Augmented Reality-Enhanced Robotic System for Epidural Interventions.

Sensors (Basel)

December 2024

Surgical Performance Enhancement and Robotics (SuPER) Centre, Department of Surgery, McGill University, Montreal, QC H3A 0G4, Canada.

The epidural injection is a medical intervention to inject therapeutics directly into the vicinity of the spinal cord for pain management. Because of its proximity to the spinal cord, imprecise insertion of the needle may result in irreversible damage to the nerves or spinal cord. This study explores enhancing procedural accuracy by integrating a telerobotic system and augmented reality (AR) assistance.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers explored how visual feedback on interaction forces enhances the performance of haptic-assisted teleoperation for robotic arms in industrial tasks.
  • They developed a new method for providing visual cues in a virtual environment and evaluated it alongside a head-mounted display during experiments focused on dross removal.
  • Results demonstrated that both methods improved task performance, with visual cues enhancing safety and the head-mounted display significantly boosting overall performance, leading to higher user acceptance of both approaches.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!