By acquiring tomographic measurements with several distinct photon energy spectra, spectral computed tomography (spectral CT) is able to provide additional material-specific information compared with conventional CT. This information enables the generation of material selective images, which have found various applications in medical imaging. However, material decomposition typically leads to noise amplification and a degradation of the signal-to-noise ratio. This is still a fundamental problem of spectral CT, especially for low-dose medical applications. Inspired by the success for low-dose conventional CT, several statistical iterative reconstruction algorithms for spectral CT have been developed. These algorithms typically rely on detailed knowledge about the spectrum and the detector response. Obtaining this knowledge is often difficult in practice, especially if photon counting detectors are used to acquire the energy specific information. In this paper, a new algorithm for joint statistical iterative material image reconstruction is presented. It relies on a semi-empirical forward model which is tuned by calibration measurements. This strategy allows to model spatially varying properties of the imaging system without requiring detailed prior knowledge of the system parameters. We employ an efficient optimization algorithm based on separable surrogate functions to accelerate convergence and reduce the reconstruction time. Numerical as well as real experiments show that our new algorithm leads to reduced statistical bias and improved image quality compared with projection-based material decomposition followed by analytical or iterative image reconstruction.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TMI.2017.2726687DOI Listing

Publication Analysis

Top Keywords

statistical iterative
12
image reconstruction
12
joint statistical
8
iterative material
8
material image
8
spectral computed
8
computed tomography
8
semi-empirical forward
8
forward model
8
material decomposition
8

Similar Publications

Glow Discharge Optical Emission Coded Aperture Spectroscopy.

Anal Chem

January 2025

Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409-41061, United States.

Glow discharge optical emission spectrometry (GDOES) allows fast and simultaneous multielemental analysis directly from solids and depth profiling down to the nanometer scale, which is critical for thin-film (TF) characterization. Nevertheless, operating conditions for the best limits of detection (LODs) are compromised in lieu of the best sputtering crater shapes for depth resolution. In addition, the fast transient signals from ultra-TFs do not permit the optimal sampling statistics of bulk analysis such that LODs are further compromised.

View Article and Find Full Text PDF

Background: The prompt and accurate identification of mild cognitive impairment (MCI) is crucial for preventing its progression into more severe neurodegenerative diseases. However, current diagnostic solutions, such as biomarkers and cognitive screening tests, prove costly, time-consuming, and invasive, hindering patient compliance and the accessibility of these tests. Therefore, exploring a more cost-effective, efficient, and noninvasive method to aid clinicians in detecting MCI is necessary.

View Article and Find Full Text PDF

Background: Telehomecare monitoring (TM) in patients with cancer is a complex intervention. Research shows variations in the benefits and challenges TM brings to equitable access to care, the therapeutic relationship, self-management, and practice transformation. Further investigation into these variations factors will improve implementation processes and produce effective outcomes.

View Article and Find Full Text PDF

Noise-matched total-likelihood-based bilateral filter: Experimental feasibility in a benchtop photon-counting CBCT system.

Phys Med

January 2025

Department of Robotics and Mechatronics Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), 333 Techno Jungang-daero, Hyeonpung-eup, Dalseong-gun, Daegu, 42988, Republic of Korea. Electronic address:

Purpose: Material decomposition induces substantial noise in basis images and their synthesized computed tomography (CT) images. A likelihood-based bilateral filter was previously developed as a neighborhood filter that effectively reduces noise. However, this method is sensitive to image contrast, and the noise texture needs improvement.

View Article and Find Full Text PDF

A prediction model for electrical strength of gaseous medium based on molecular reactivity descriptors and machine learning method.

J Mol Model

January 2025

Hubei Key Laboratory·for High-Efficiency-Utilization of Solar Energy and Operation, Control of Energy-Storage System, Hubei-University of Technology, Wuhan, 430068, China.

Context: Ionization and adsorption in gas discharge are similar to electrophilic and nucleophilic reactions. The molecular descriptors characterizing reactions such as electrostatic potential descriptors are useful in predicting the electrical strength of environmentally friendly gases. In this study, descriptors of 73 molecules are employed for correlation analysis with electrical strength.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!