Despite the availability of numerical models, interest in analytical solutions of multidimensional advection-dispersion systems remains high. Such models are commonly used for performing Tier I risk analysis and are embedded in many regulatory frameworks dealing with groundwater contamination. In this work, we develop a closed-form solution of the three-dimensional advection-dispersion equation with exponential source decay, first-order reaction, and retardation, and present an approach based on some ease of use diagrams to compare it with the integral open form solution and with earlier versions of the closed-form solution. The comparison approach focuses on the relative differences associated with source decay and the effect of simulation time. The analysis of concentration contours, longitudinal sections, and transverse sections confirms that the closed-form solutions studied can be used with acceptable approximation in the central area of a plume bound transversely within the source width, both behind and beyond the advective front and for concentration values up to two orders of magnitude less than the initial source concentration. As the proposed closed-form model can be evaluated without nested numerical computations and with simple mathematical functions, it can be very useful in risk assessment procedures.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/gwat.12564 | DOI Listing |
J Hazard Mater
January 2025
Radiological Physics and Advisory Division, Bhabha Atomic Research Centre, Mumbai 400085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India.
Experiments were conducted in controlled laboratory conditions to determine the size-resolved CCN (Cloud Condensation Nuclei) activity of sub micrometer-sized aerosols containing nuclear fission products (CsI and CsOH) and abundant ambient inorganic aerosols ammonium sulphates ((NH)SO), ammonium chloride (NHCl), sodium nitrate (NaNO), and sodium chloride (NaCl). The presence of these atmospheric-relevant compounds internally mixed with fission product compounds has the potential to affect the capacity of ambient particulates of aerosols to absorb water and function as CCN. Once in the atmosphere, the dynamics of airborne radionuclides and subsequently their fate gets affected by dry and wet deposition processes.
View Article and Find Full Text PDFEJNMMI Phys
January 2025
Department of Medical Radiation Physics and Nuclear Medicine, Karolinska University Hospital, Solna, Sweden.
Background: System calibration is essential for accurate SPECT/CT dosimetry. However, count losses due to dead time and pulse pileup may cause calibration errors, in particular for I, where high count rates may be encountered. Calibration at low count rates should also be avoided to minimise detrimental effects from e.
View Article and Find Full Text PDFMedicina (Kaunas)
January 2025
Department of Dental Pathology, Faculty of Medicine, University of East Sarajevo, Studentska bb, 73300 Foca, Bosnia and Herzegovina.
: This study aimed to examine the prevalence of dental fear among schoolchildren in Bosnia and Herzegovina, analyze the distribution of dental anxiety by gender, age, and place of residence in relation to perceived sources of fear, and evaluate its association with oral health status. : The sample included 355 schoolchildren between the ages of 12 and 15. Data were gathered using a self-assessment questionnaire, a brief clinical oral examination, and the Children's Fear Survey Schedule-Dental Subscale (CFSS-DS).
View Article and Find Full Text PDFAppl Radiat Isot
March 2025
Experimental Nuclear Physics Department, Nuclear Research Centre, Egyptian Atomic Energy Authority, Egypt; Cyclotron Facility, Egyptian Atomic Energy Authority, Egypt.
Neutron and gamma-ray shielding design for a 30Ci (1.11TBq) Am-Be irradiation facility is studied using MCNP5 Monte Carlo simulation code. The study focuses on the optimization of the shielding layers of the previously planned neutron irradiation facility.
View Article and Find Full Text PDFNeural Netw
January 2025
City University of Hong Kong Shenzhen Research Institute, Shenzhen, China; Department of Mathematics, City University of Hong Kong, Hong Kong, China. Electronic address:
We consider kernel-based supervised learning using random Fourier features, focusing on its statistical error bounds and generalization properties with general loss functions. Beyond the least squares loss, existing results only demonstrate worst-case analysis with rate n and the number of features at least comparable to n, and refined-case analysis where it can achieve almost n rate when the kernel's eigenvalue decay is exponential and the number of features is again at least comparable to n. For the least squares loss, the results are much richer and the optimal rates can be achieved under the source and capacity assumptions, with the number of features smaller than n.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!