A high-yielding, stereoselective and extraordinarily complexity-generating Petasis 3-component/intramolecular Diels-Alder reaction has been developed. In combination with ROM-RCM, rapid access to complex sp-rich heterocyclic scaffolds amenable to subsequent functionalization and library synthesis is provided.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c7cc02948a | DOI Listing |
Curr Drug Targets
January 2025
School of Pharmaceutical Sciences, Shoolini University, Solan, HP, India.
A range of heterocyclic compounds, including Isatin (oneH-indole-2, 3-dione) and its by-products, have been shown to represent potential unit blocks in the synthesis of potential medicinal agents. Numerous studies have been carried out on isatin, its synthesis, biological uses, and its chemical composition since when it was discovered. Functionally, these isatin-containing heterocycles have demonstrated antibacterial, antidiabetic, antiviral, antitubercular, and anticancer properties, among many others.
View Article and Find Full Text PDFBeilstein J Org Chem
January 2025
Department of Chemistry, University of Crete, Voutes, 71003 Heraklion, Greece.
C1 chemistry has a central role in the efficient utilization of single-carbon molecules, contributing significantly to sustainability, innovation and economic growth across various sectors. In this study, we present an efficient and rapid method for synthesizing a variety of heteroannulated pyrimidones using cyanoacetamide-based multicomponent reaction (MCR) chemistry. By utilizing specific MCR-based scaffolds as precursors and employing the abundant and inexpensive formamide as a C1 feedstock under neat conditions, we were able to efficiently access substituted thieno-, quinolino- and indolopyrimidones without the need of column chromatography.
View Article and Find Full Text PDFChemistryOpen
January 2025
School of Chemistry and Physics, University of KwaZulu-Natal, P/Bag X54001, Westville, Durban, 4000, South Africa.
Quinazolines/quinazolin-4-ones are significant nitrogen-containing heterocycles that exist in various natural products and synthetic scaffolds with diverse medicinal and pharmacological applications. Researchers across the globe have explored numerous synthetic strategies to develop safer and more potent quinazoline/quinazolinone analogues, particularly for combating cancer and microbial infections. This review systematically examines scholarly efforts toward understanding this scaffold's synthetic pathways and medicinal relevance, emphasizing the role of metal and non-metal catalysts and other reagents in their synthesis.
View Article and Find Full Text PDFAcc Chem Res
January 2025
The Department of Chemistry, State University of New York at Binghamton, Binghamton, New York 13902, United States.
ConspectusIn the search for efficient and selective electrocatalysts capable of converting greenhouse gases to value-added products, enzymes found in naturally existing bacteria provide the basis for most approaches toward electrocatalyst design. Ni,Fe-carbon monoxide dehydrogenase (Ni,Fe-CODH) is one such enzyme, with a nickel-iron-sulfur cluster named the C-cluster, where CO binds and is converted to CO at high rates near the thermodynamic potential. In this Account, we divide the enzyme's catalytic contributions into three categories based on location and function.
View Article and Find Full Text PDFChem Biodivers
January 2025
NMIMS Deemed to be University - Mumbai Campus: NMIMS, Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SPPSPTM, VILE PARLE WEST, 400056, Mumbai, INDIA.
Acetohydroxyacid synthase (AHAS) is a vital enzyme in Mycobacterium tuberculosis, the pathogen causing tuberculosis (TB), involved in branched-chain amino acid synthesis. Targeting AHAS for drug design against TB offers a promising strategy due to its essentiality in bacterial growth. In current investigation, we have designed 160 novel compounds by leveraging key scaffolds identified through structure-based drug design (SBDD) methodologies.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!