Puzihella rosea gen. nov., sp. nov., a novel member of the family Microbacteriaceae isolated from freshwater.

Int J Syst Evol Microbiol

Laboratory of Microbiology, Department of Seafood Science, National Kaohsiung Marine University, No. 142, Hai-Chuan Rd. Nan-Tzu, Kaohsiung City 811, Taiwan, ROC.

Published: July 2017

Two Gram-stain-positive, aerobic, pink, curved, rod-shaped, non-motile bacterial strains, designated MI-28T and SKY-11, were isolated from freshwater samples taken from a river and fish pond, respectively. Based on characterization using a polyphasic approach, the two strains showed highly similar phenotypic, physiological and genetic profiles. They demonstrated 99.9 % 16S rRNA gene sequence similarity and a 93-95 % DNA-DNA relatedness value, suggesting that they represent a single genomic species. Phylogenetic analyses, based on 16S rRNA gene sequences, showed that strains MI-28T and SKY-11 form a distinct lineage with respect to closely related genera within the family Microbacteriaceae of the class Actinobacteria, which is most closely related to Rhodoluna and Pontimonas, and levels of 16S rRNA gene sequence similarity with the type species of related genera were less than 95 %. Cell-wall analysis showed that the peptidoglycan contained 2,4-diaminobutyric acid, alanine, glycine and glutamic acid. The predominant fatty acids were iso-C14 : 0, anteiso-C15 : 0 and iso-C16 : 0. The polar lipid profile consisted of a mixture of phosphatidylglycerol, diphosphatidylglycerol, an uncharacterized glycolipid and an uncharacterized aminophospholipid. The major polyamine was putrescine. The major isoprenoid quinone was MK-10. The G+C content of DNA was between 62.6 and 62.9 mol%. On the basis of the genotypic and phenotypic data, strains MI-28T and SKY-11 represent a novel genus and species of the family Microbacteriaceae, for which the name Puzihella rosea gen. nov., sp. nov. is proposed. The type strain of the type species is MI-28T (=BCRC 80688T=LMG 27848T=KCTC 29239T).

Download full-text PDF

Source
http://dx.doi.org/10.1099/ijsem.0.001967DOI Listing

Publication Analysis

Top Keywords

family microbacteriaceae
12
mi-28t sky-11
12
16s rrna
12
rrna gene
12
puzihella rosea
8
rosea gen
8
gen nov
8
nov nov
8
isolated freshwater
8
gene sequence
8

Similar Publications

Novel Rhamnose-Containing Glycopolymers from the Cell Wall of VKM Ac-1390.

Biochemistry (Mosc)

December 2024

Pushchino Scientific Center for Biological Research, Russian Academy of Sciences, Skryabin Institute of Biochemistry and Physiology of Microorganisms, Pushchino, Moscow Region, 142290, Russia.

VKM Ac-1390 (family Microbacteriaceae, class Actinomycetes) contains three rhamnose-containing glycopolymers in the cell wall, the structures of which were established by chemical and NMR spectroscopy methods. The first polymer, a rhamnomannan, consists of repeating tetrasaccharide units with xylopyranose side residues, →2)-α-[β-D-Xyl-(1→3)]-D-Rha-(1→3)-α-D-Man-(1→2)-α-D-Rha-(1→3)-α-D-Man-(1→. The second polymer found in minor amounts, is a rhamnan, →2)-α-D-Rha-(1→3)-α-D-Rha-(1→.

View Article and Find Full Text PDF

Introduction: The northwest Arabian Gulf encounters significant anthropogenic pressures, including nutrient enrichment from coastal development and effluent discharge.

Methods: This study presents the first shotgun metagenomics-based characterization of microbial communities in Kuwaiti waters of the northwest Arabian Gulf, focusing on Kuwait's first Marine Protected Area (MPA) in Sulaibikhat Bay, a vital nursery ground for commercially important fish.

Results: Analysis revealed significantly higher microbial diversity within the MPA compared to adjacent waters, with Rhodobacteraceae (27.

View Article and Find Full Text PDF

Long-isolated subsurface brine environments (Ma-Ga residence times) may be habitable if they sustainably provide substrates, e.g. through water-rock reactions, that support microbial catabolic energy yields exceeding maintenance costs.

View Article and Find Full Text PDF

Background: Climate change has recently boosted the severity and frequency of pine bark beetle attacks. The bacterial community associated with these beetles acts as "hidden players," enhancing their ability to infest and thrive on defense-rich pine trees. There is limited understanding of the environmental acquisition of these hidden players and their life stage-specific association with different pine-feeding bark beetles.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!