Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Novel fluorescence with highly covert and reliable features is quite desirable to combat the sophisticated counterfeiters. Herein, we report a simultaneously triple-modal fluorescent characteristic of CsPbBr@CsPbBr/SiO by the excitation of thermal, ultraviolet (UV) and infrared (IR) light for the first time, which can be applied for the multiple modal anti-counterfeiting codes. The diphasic structure CsPbBr@CsPbBr nanocrystals (NCs) was synthesized via the typical reprecipitation method followed by uniformly encapsulation into silica microspheres. Cubic CsPbBr is responsible for the functions of anti-counterfeiting, while CsPbBr crystalline and SiO are mainly to protect unstable CsPbBr NCs from being destroyed by ambient conditions. The as-prepared CsPbBr@CsPbBr/SiO NCs possess improved stability and are capable of forming printable ink with organic binders for patterns. Interestingly, the fluorescence of diphasic CsPbBr@CsPbBr/SiO capsule patterns can be reversibly switched by the heating, UV, and IR light irradiation, which has been applied as triple-modal fluorescent anti-counterfeiting codes. The results demonstrate that the perovskite@silica capsules are highly promising for myriad applications in areas such as fluorescent anti-counterfeiting, optoelectronic devices, medical diagnosis, and biological imaging.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.7b06436 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!