A novel series of pyridin-3-amine derivatives were designed, synthesized, and evaluated as multitargeted protein kinase inhibitors for the treatment of non-small cell lung cancer (NSCLC). Hit 1 was first disclosed by in silico screening against fibroblast growth factor receptors (FGFR), which was subsequently validated by in vitro experiments. The structure-activity relationship (SAR) of its analogues was then explored to afford novel FGFR inhibitors 2a-2p and 3a-3q. Among them, 3m showed potent inhibition against FGFR1, 2, and 3. Interestingly, compound 3m not only inhibited various phosphorylation and downstream signaling across different oncogenic forms in FGFR-overactivated cancer cells but also showed nanomolar level inhibition against several other NSCLC-related oncogene kinases, including RET, EGFR, EGFR/T790M/L858R, DDR2, and ALK. Finally, in vivo pharmacology evaluations of 3m showed significant antitumor activity (TGI = 66.1%) in NCI-H1581 NSCLC xenografts with a good pharmacokinetic profile.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jmedchem.7b00076DOI Listing

Publication Analysis

Top Keywords

pyridin-3-amine derivatives
8
multitargeted protein
8
protein kinase
8
kinase inhibitors
8
inhibitors treatment
8
treatment non-small
8
non-small cell
8
cell lung
8
lung cancer
8
design synthesis
4

Similar Publications

Imidazoles are a category of azole antifungals that encompass compounds such as ketoconazole, miconazole, esomeprazole, and clotrimazole. In contrast, the triazoles group, which includes fluconazole, voriconazole, and itraconazole, also plays a significant role. The rise of antibiotic resistance in fungal pathogens has evolved into a substantial global public health concern.

View Article and Find Full Text PDF

Three new 2-(2-pyridyl)benzothiazole derivatives, namely 2-(benzothiazol-2-yl)pyridin-3-amine (APYBT), 2-(benzothiazol-2-yl)pyridin-5-ol (HPYBT) and 2-(pyridin-2-yl)benzothiazole (PYBT), have been synthesized. Those are tested for their potentiality to impart corrosion resistance to mild steel exposed to 1 M aqueous HCl. Both electrochemical and gravimetric experiments establish the studied benzothiazole (BT) derivatives as promising corrosion inhibitors, with APYBT standing out as the most effective one exerting more than 97% inhibition efficiency at 1 mM concentration.

View Article and Find Full Text PDF

Groebke-Blackburn-Bienaymé Reaction for DNA-Encoded Library Technology.

Org Lett

June 2023

Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University, Daegu 41566, Republic of Korea.

This study presents a DNA-compatible synthesis of diverse 5-arylimidazo[1,2-]pyridin-3-amine derivatives using the Suzuki-Miyaura reaction, followed by a Groebke-Blackburn-Bienaymé (GBB) reaction. The GBB reaction demonstrates a wide substrate scope, mild one-pot reaction conditions, and compatibility with subsequent enzymatic ligation, highlighting its potential in DNA-encoded library technology.

View Article and Find Full Text PDF

Cyclooxygenase (COX), which plays a role in converting arachidonic acid to inflammatory mediators, could be inhibited by non-steroidal anti-inflammatory drugs (NSAIDs). Although potent NSAIDs are available for the treatment of pain, fever, and inflammation, some side effects, such as gastrointestinal ulcers, limit the use of these medications. In recent years, selective COX-2 inhibitors with a lower incidence of adverse effects attained an important position in medicinal chemistry.

View Article and Find Full Text PDF

Synthesis and biological evaluation of 4-(4-aminophenyl)-6-methylisoxazolo[3,4-b] pyridin-3-amine covalent inhibitors as potential agents for the treatment of acute myeloid leukemia.

Bioorg Med Chem

September 2022

Laboratory of Molecular Design and Drug Discovery, School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu 211198, China. Electronic address:

Fms-like tyrosine kinase 3 (FLT3) mutation has been strongly associated with increased risk of relapse, and the irreversible covalent FLT3 inhibitors had the potential to overcome the drug-resistance. In this study, a series of simplified 4-(4-aminophenyl)-6-methylisoxazolo[3,4-b] pyridin-3-amine derivatives containing two types of Michael acceptors (vinyl sulfonamide, acrylamide) were conveniently synthesized to target FLT3 and its internal tandem duplications (ITD) mutants irreversibly. The kinase inhibitory activities showed that compound C14 displayed potent inhibition activities against FLT3 (IC = 256 nM) and FLT3-ITD by 73 % and 25.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!