Protein tyrosine nitration by oxidative and nitrate stress is important in the pathogenesis of many inflammatory or aging-related diseases. Mass spectrometry analysis of protein nitrotyrosine is very challenging because the non-nitrated peptides suppress the signals of the low-abundance nitrotyrosine (NT) peptides. No validated methods for enrichment of NT-peptides are currently available. Here we report an immunoaffinity enrichment of NT-peptides for proteomics analysis. The effectiveness of this approach was evaluated using nitrated protein standards and whole-cell lysates in vitro. A total of 1881 NT sites were identified from a nitrated whole-cell extract, indicating that this immunoaffinity-MS method is a valid approach for the enrichment of NT-peptides, and provides a significant advance for characterizing the nitrotyrosine proteome. We noted that this method had higher affinity to peptides with N-terminal nitrotyrosine relative to peptides with other nitrotyrosine locations, which raises the need for future study to develop a pan-specific nitrotyrosine antibody for unbiased, proteome-wide analysis of tyrosine nitration. We applied this method to quantify the changes in protein tyrosine nitration in mouse lungs after intranasal poly(I:C) treatment and quantified 237 NT sites. This result indicates that the immunoaffinity-MS method can be used for quantitative analysis of protein nitrotyrosines in complex samples.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5656043 | PMC |
http://dx.doi.org/10.1021/acs.jproteome.7b00275 | DOI Listing |
Acta Pharmacol Sin
January 2025
Department of Anatomy and Convergence Medical Science, College of Medicine, Institute of Medical Science, Tyrosine Peptide Multiuse Research Group, Anti-aging Bio Cell Factory Regional Leading Research Center, Gyeongsang National University, Jinju, Gyeongnam, Republic of Korea.
Glutamine synthetase (GS) plays a crucial role in the homeostasis of the glutamate-glutamine cycle in the brain. Hypoactive GS causes depressive behaviors. Under chronic stress, GS has no change in expression, but its activity is decreased due to nitration of tyrosine (Tyr).
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science & Technology, Wuhan, 430074, PR China. Electronic address:
The amyloid aggregation of hIAPP and the increased level of oxidative stress are closely related to the occurrence and development of type 2 diabetes (T2D). Protein tyrosine nitration is a common post-translational modification under oxidative stress conditions. We previously found that tyrosine nitrated hIAPP (3-NT-hIAPP) has higher cytotoxicity than wild type hIAPP.
View Article and Find Full Text PDFFree Radic Biol Med
December 2024
Dept. of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark. Electronic address:
Redox Rep
December 2024
Department of Emergency Medicine, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, People's Republic of China.
Neuroscience
January 2025
Instituto Cajal, Avda. Doctor Arce, 24, 28002 Madrid, Spain.
Thyroid hormones play an important morphogenetic role during the fetal and neonatal periods and regulate numerous metabolic processes. In the central nervous system, they control myelination and overall brain development, regional gene expression, and regulation of oxygen consumption. Their deficiency in the fetal and neonatal periods causes severe mental retardation, due to lack of thyroid function, or to iodine deficiency.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!