By using a one-step epoxide ring-opening reaction between 4-hydroxy-2,2,6,6-tetramethylpiperidine 1-oxyl (4-hydroxy-TEMPO) and glycidyltrimethylammonium cation (GTMA ), we synthesized a cation-grafted TEMPO (g -TEMPO) and studied its electrochemical performance against a Zn /Zn anode in a hybrid redox flow battery. To conduct Cl counter anions, a crosslinked methylated polybenzimidazole (PBI) membrane was prepared and placed between the catholyte and anolyte. Compared to 4-hydroxy-TEMPO, the positively charged g - TEMPO exhibits enhanced reaction kinetics. Moreover, flow battery tests with g -TEMPO show improved Coulombic, voltage, and energy efficiencies and cycling stability over 140 cycles. Crossover of active species through the membrane was not detected.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cssc.201701060DOI Listing

Publication Analysis

Top Keywords

flow battery
12
hybrid redox
8
redox flow
8
pbi membrane
8
one-step cationic
4
cationic grafting
4
grafting 4-hydroxy-tempo
4
4-hydroxy-tempo application
4
application hybrid
4
battery crosslinked
4

Similar Publications

Significance: Cerebral blood flow (CBF) and cerebral blood volume (CBV) are key metrics for regional cerebrovascular monitoring. Simultaneous, non-invasive measurement of CBF and CBV at different brain locations would advance cerebrovascular monitoring and pave the way for brain injury detection as current brain injury diagnostic methods are often constrained by high costs, limited sensitivity, and reliance on subjective symptom reporting.

Aim: We aim to develop a multi-channel non-invasive optical system for measuring CBF and CBV at different regions of the brain simultaneously with a cost-effective, reliable, and scalable system capable of detecting potential differences in CBF and CBV across different regions of the brain.

View Article and Find Full Text PDF

Remaining useful life (RUL) prediction is a crucial aspect of the prognostics health management of lithium-ion batteries (LIBs). Owing to the influence of resampling technology, particle degradation is often observed in the particle filter-based RUL prediction of LIBs, resulting in a low prediction accuracy and large uncertainty. In this paper, a novel particle flow filter with the grey model method (GM-PFF) is proposed to forecast the RUL and state of health of batteries.

View Article and Find Full Text PDF

The tightly connected structure of polybenzimidazole (PBI) membrane can be relaxed by solvent/nonsolvent solution to achieve a high proton conductivity for vanadium redox flow battery (VRFB). However, the nature behind the solvent/nonsolvent strategy is not unraveled. This work proposes a guideline to analyze the effect of PBI membrane relaxing formulas based on the interactions between different components in membranes.

View Article and Find Full Text PDF

Fluorine-free organic framework polyelectrolyte membranes showing near frictionless ionic conductivities are gaining cognitive insights. However, the co-precipitation of COFs in the membranes often brings trade-offs to commission long-life electrochemical energy storage solutions. Herein, a durable and ionically miscible dual-ion exchange membrane based on triazine organic framework (TOF) is designed for alkaline redox flow batteries (RFB).

View Article and Find Full Text PDF

Zinc (Zn)-based batteries have been persistently challenged by the critical issue of inhomogeneous zinc deposition/stripping process on substrate surface. Herein, we reveal that zinc electrodeposition behaviors dramatically improved through the introduction of highly zincophilic copper oxide nanoparticles (CuO NPs). Strong electronic redistribution between Zn and CuO explains the high Zn affinity on CuO, with negligible nucleation overpotential.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!