Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/1440-1630.12375 | DOI Listing |
Nanoscale
January 2025
Centre for Nano Science and Nano Technology, S 'O' A (Deemed to be University), Bhubaneswar-751 030, Odisha, India.
Titanium (Ti)-based MOFs are promising materials known for their porosity, stability, diverse valence states, and a lower conduction band (CB) than Zr-MOFs. These features support stable ligand-to-metal charge transfer (LMCT) transitions under photoirradiation, enhancing photocatalytic performance. However, Ti-MOF structures remain a challenge owing to the highly volatile and hydrophilic nature of ionic Ti precursors.
View Article and Find Full Text PDFIn Vitro Model
February 2024
IFIBYNE-UBA-CONICET, Buenos Aires, Argentina.
In this Highlights article, we present insights into the use of simple cell lines in neuroinflammation research, highlighting key findings from our recent investigations. Simple cell lines, including HEK, PC12, SHSY5Y, and N2a cells, provide valuable insights into critical signaling pathways and hidden facets of the neuroinflammatory landscape. Focusing on specific outcomes, including the impact of interleukin-6 (IL-6) and acid-sensing ion channels (ASIC1a), the study sheds light on neuroinflammatory processes.
View Article and Find Full Text PDFAoB Plants
January 2025
Department of Biodiversity and Biostatistics, Institute of Biosciences of Botucatu, São Paulo State University (UNESP), Professor Antônio Celso Wagner Zagnin street, 250, District of Rubião Júnior, 18618-970, Botucatu City, São Paulo State, Brazil.
The anatomical and cytological characteristics of the mucilage-secretory system have been widely studied in Malvaceae. However, conflicting information regarding the morphological nature of secretory structures exists, and some remain poorly understood. In this sense, some secretory structures in Malvaceae are not characterized as typical isolated idioblasts, canals, or cavities.
View Article and Find Full Text PDFLensless imaging offers a lightweight, compact alternative to traditional lens-based systems, ideal for exploration in space-constrained environments. However, the absence of a focusing lens and limited lighting in such environments often results in low-light conditions, where the measurements suffer from complex noise interference due to insufficient capture of photons. This study presents a robust reconstruction method for high-quality imaging in low-light scenarios, employing two complementary perspectives: model-driven and data-driven.
View Article and Find Full Text PDFFor indirect time-of-flight (iToF) cameras, we proposed a modeling approach focused on addressing random error. Our model characterizes random error comprehensively by detailing the propagation of error introduced by signal light, ambient light, and dark noise through phase calculation and system correction processes. This framework leverages correlations between incident light and tap responses to quantify noise impacts accurately.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!