Relaxation oscillators consist of periodic variations of a physical quantity triggered by a static excitation. They are a typical consequence of nonlinear dynamics and can be observed in a variety of systems. VO is a correlated oxide with a solid-state phase transition above room temperature, where both electrical resistance and lattice parameters undergo a drastic change in a narrow temperature range. This strong nonlinear response allows to realize spontaneous electrical oscillations in the megahertz range under a DC voltage bias. These electrical oscillations are employed to set into mechanical resonance a microstructure without the need of any active electronics, with small power consumption and with the possibility to selectively excite specific flexural modes by tuning the value of the DC electrical bias in a range of few hundreds of millivolts. This actuation method is robust and flexible and can be implemented in a variety of autonomous DC-powered devices.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/adma.201701618 | DOI Listing |
Sci Rep
December 2024
School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, China.
A ridge-loaded staggered double-vane slow-wave structure is proposed for terahertz radiation sources employing a sheet electron beam. This slow-wave structure has the advantages of enhanced electric field and energy density distribution and improved interaction impedance in the beam-wave interaction region. High-frequency characteristics are investigated for the proposed slow wave structure and compared with those of the staggered double-vane slow wave structure.
View Article and Find Full Text PDFAdv Mater
December 2024
Department of Chemical Sciences and Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, 741246, India.
Advancements in stimuli-driven nanoactuators necessitate the discovery of photo-switchable, self-contained semiconductor nanostructures capable of precise mechanical responses. The reversible assembly of 0D CsBiI halide perovskite nanoplatelets (NPLs) between stacked and scattered configurations are demonstrated under light and dark, respectively. This sunlight-triggered perpetual flipping of the NPLs, occurring in less than a minute, is associated with a color change between brown and red.
View Article and Find Full Text PDFNeurobiol Dis
December 2024
Institute of Physiology I, Münster University, Münster, Germany. Electronic address:
Spike-wave-discharges (SWD) are the electrophysiological hallmark of absence epilepsy. SWD are generated in the thalamo-cortical network and a seizure onset zone was identified in the somatosensory cortex (S1). We have shown before that inhibition of the centromedian thalamic nucleus (CM) in GAERS rats resulted in a selective suppression of the spike component while rhythmic cortical 5-9 Hz oscillations remained present.
View Article and Find Full Text PDFFront Netw Physiol
December 2024
Department of Physics, University of Alberta, Edmonton, AB, Canada.
A steadily increasing number of publications support the concept of physiological networks, and how cellular bioelectrical properties drive cell proliferation and cell synchronization. All cells, especially cancer cells, are known to possess characteristic electrical properties critical for physiological behavior, with major differences between normal and cancer cell counterparts. This opportunity can be explored as a novel treatment modality in Oncology.
View Article and Find Full Text PDFHeliyon
December 2024
Guangdong Institute of Intelligence Science and Technology, Hengqin, Zhuhai, 519031, Guangdong, China.
Introduction: Transcranial electrical stimulation (tES), including transcranial alternating current stimulation (tACS) and transcranial direct current stimulation (tDCS), is widely studied for its potential to modulate brain oscillations and connectivity, offering treatment options for neurological disorders like Alzheimer's, Parkinson's, and insomnia. In this study, we focus on investigating the efficacy of tACS and tDCS in entraining intrinsic cortical network oscillations through a computational model.
Materials And Methods: We developed a 2D computational cortical neuron model with 2000 neurons (1600 pyramidal and 400 inhibitory), based on the Izhikevich neuron model.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!