A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Identification of potential target genes associated with the pathogenesis of osteoarthritis using microarray based analysis. | LitMetric

AI Article Synopsis

  • The study aimed to investigate the molecular mechanisms behind osteoarthritis (OA) and pinpoint potential therapeutic gene targets.
  • It analyzed microarray data from synovial membrane samples of early and late-stage knee OA patients, identifying over 1,200 differentially expressed genes (DEGs) that were compared with healthy samples.
  • Key proteins and transcription factors (like AGT, CXCL12, and KDM2B) were identified as significant in the disease's development, suggesting their potential roles in OA treatment strategies.

Article Abstract

The aim of the present study was to investigate the molecular circuitry of osteoarthritis (OA) and identify more potential target genes for OA treatment. Microarray data of GSE32317 was downloaded from the National Center for Biotechnology Information Gene Expression Omnibus database. Differentially expressed genes (DEGs) were identified in samples of synovial membrane from patients with early stage of knee OA (OA_Early) and late stage of knee OA (OA_End) that were compared with healthy specimens. Bioinformatics analysis was applied to analyze the significant functions and pathways that were enriched by the common DEGs identified in OA_Early and OA_End samples. Furthermore, a protein‑protein interaction (PPI) network was constructed and significant modules were extracted. Transcription factors (TFs) that could regulate genes in the significant modules were identified. A total of 1,207 and 1,575 DEGs were identified in OA_Early and OA_End samples compared with healthy samples, respectively. A total of 740 genes were upregulated and 308 genes were downregulated across the OA_Early and OA_End samples. These common DEGs were enriched in different gene ontology terms and pathways, such as immune response. Angiotensinogen (AGT) and C‑X‑C motif chemokine ligand 12 (CXCL12) were identified to be hub proteins in the PPI network or in the selected module 1. In addition, the DEG lysine demethylase 2B (KDM2B) was identified as a TF that can regulate genes in the significant modules 2 and 3. In conclusion, the present study has identified AGT, CXCL12 and KDM2B as potentially essential genes associated with the pathogenesis of knee OA.

Download full-text PDF

Source
http://dx.doi.org/10.3892/mmr.2017.6928DOI Listing

Publication Analysis

Top Keywords

degs identified
12
oa_early oa_end
12
oa_end samples
12
potential target
8
genes
8
target genes
8
genes associated
8
associated pathogenesis
8
stage knee
8
compared healthy
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!