Glioma is one of the most common types of tumor of the central nervous system. Increased expression of C‑C motif chemokine 2 (CCL2) has previously been observed in various types of cancer. The effect of CCL2 small interfering (si)RNA on the proliferation, angiogenesis and apoptosis of the glioma cell line U251 was investigated in the present study. Data on CCL2 expression in glioma and normal tissues were obtained from The Cancer Genome Atlas. A total of 30 patients with glioma were enrolled in the present study. Cell proliferation was measured using a Cell Counting kit‑8 assay, while cellular apoptosis and cell cycle distribution were examined using flow cytometric analysis. The reverse transcription‑quantitative polymerase chain reaction and western blot analysis were used to measure the expression levels of biological pathway‑associated proteins caspase‑3, caspase‑7, tumor necrosis factor receptor superfamily member 10C (TNFRSF10C), growth regulated α protein (CXCL1), C‑X‑C motif chemokine 2 (CXCL2), C‑X‑C chemokine receptor type 2 (CXCR2), vascular endothelial growth factor (VEGF)A, VEGFB and VEGF. In addition, the mechanism of cellular apoptosis was analyzed by examining the phosphorylation of extracellular signal‑related kinase (ERK)1/2 and p38 mitogen‑activated protein kinase (p38) in cells treated with the C‑C chemokine receptor type 2 inhibitor RS‑102895. CCL2 was observed to be expressed in the glioma cell line U251 and was inhibited by CCL2 siRNA. Cells transfected with CCL2 siRNA exhibited inhibited cell proliferation, cell cycle arrest and increased cellular apoptosis. The expression levels of the apoptosis‑associated proteins caspase‑3, caspase‑7 and TNFRSF10C were observed to be downregulated, in addition to those of the angiogenesis‑associated proteins CXCL1, CXCL2, CXCR2, VEGFA, VEGFB and VEGF. The decrease in the rate of phosphorylation of ERK1/2 and p38 demonstrated the involvement of the mitogen‑activated protein kinase/ERK pathway in apoptosis. In conclusion, CCL2 siRNA exhibited effective inhibition of cell proliferation and angiogenesis in the glioma cell line U251, which may provide a theoretical basis for the use of CCL2 in in vivo research and clinical treatment as a novel anticancer agent.

Download full-text PDF

Source
http://dx.doi.org/10.3892/mmr.2017.6995DOI Listing

Publication Analysis

Top Keywords

ccl2 sirna
16
glioma cell
16
cell u251
12
cell proliferation
12
cellular apoptosis
12
cell
10
ccl2
9
sirna proliferation
8
ccl2 observed
8
proliferation angiogenesis
8

Similar Publications

Background: Melanoma cells frequently dedifferentiate in response to inflammation which can increase responses to certain cytokines. Interferon-γ (IFNγ) is an integral part of the anti-tumor immune response and can directly induce both differentiational changes and expression of immunosuppressive proteins in melanoma cells. How the differentiation status of melanoma cells affects IFNγ responses remains unclear.

View Article and Find Full Text PDF

Homeobox genes encode transcription factors which organize differentiation processes in all tissue types including the hematopoietic compartment. Recently, we have reported physiological expression of TALE-class homeobox gene IRX1 in early myelopoiesis restricted to the megakaryocyte-erythroid-progenitor stage and in early B-cell development to the pro-B-cell stage. In contrast, sister homeobox genes IRX2, IRX3 and IRX5 are aberrantly activated in the corresponding malignancies acute myeloid leukemia (AML) and B-cell progenitor acute lymphoid leukemia.

View Article and Find Full Text PDF

Reduction in MCP-1 production in preadipocytes is mediated by PPARγ activation and JNK/SIRT1 signaling.

Biochim Biophys Acta Gen Subj

February 2025

Department of Pharmaceutical Pharmacology, College of Pharmaceutical Sciences, Matsuyama University, 4-2 Bunkyo-cho, Matsuyama, Ehime 790-8578, Japan.

Obesity-induced monocyte chemoattractant protein 1 (MCP-1) production leads to the infiltration of monocytes/macrophages into white adipose tissue (WAT), which contributes to systemic insulin resistance. Peroxisome proliferator-activated receptor gamma (PPARγ) agonists are known to reduce MCP-1 production in both humans and mice; however, the underlying mechanism in WAT remains unclear. Here, we propose a novel mechanism for the reduction in MCP-1 production in preadipocytes.

View Article and Find Full Text PDF
Article Synopsis
  • Autophagy in macrophages plays a crucial role in managing inflammation during Streptococcus suis infections, impacting both humans and pigs.
  • The study explores how autophagy influences inflammatory responses in mouse microglial cells (BV2) by examining key signaling pathways like AMPK/mTOR and NF-κB/MAPK.
  • Results indicate that autophagy helps reduce inflammation by inhibiting NF-κB and MAPK pathways, which lowers levels of pro-inflammatory factors such as CCL2, CCL3, CCL5, and TNF-α during S. suis infection.
View Article and Find Full Text PDF

Background: As part of stress-triggered molecules, immediate early response 3 (IER3) dysregulation has been reported to sustain pro-oncogenic pathways and precede malignant transformation. However, the role of IER3 in glioma pathology is ill-defined.

Methods: Immunohistochemistry (IHC) assay and publicly available glioma datasets were used to calculate the IER3 expression level in glioma.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!