Glioma is the most common and aggressive type of primary malignant brain tumour. Increasing evidence has revealed that microRNAs play important roles in multiple biological processes related to glioma occurrence, development, diagnosis, treatment and prognosis. MicroRNA-202 (miR-202) has been studied in several types of human cancer, whereas the biological roles of miR-202 in glioma remain unknown. The present study, aimed to investigate the expression, clinical significance and biological roles of miR-202 in glioma, as well as its underlying molecular mechanism. We found that miR-202 was significantly downregulated in glioma tissues and cell lines. Low miR-202 expression was associated with Karnofsky performance status (KPS) score and World Health Organization (WHO) grade of glioma patients. Functional assays revealed that ectopic expression of miR-202 inhibited cell proliferation, migration and invasion of glioma. In addition, metadherin (MTDH) was identified as a direct target gene of miR-202 in glioma through bioinformatic analysis, luciferase reporter assay, reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and western blotting. Furthermore, MTDH expression was upregulated and negatively correlated with miR-202 expression in clinical glioma tissues. MTDH knockdown had similar roles to miR-202 overexpression in glioma cells. Rescue experiments revealed that upregulation of MTDH reversed the suppression of glioma cell growth and metastasis by miR-202. Moreover, miR-202 impaired the PI3K/Akt and Wnt/β-catenin pathways. These results highlight the tumour-suppressive effect of miR-202 in glioma, thereby suggesting that miR-202 may be a potential therapeutic target for the treatment of patients with this malignancy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3892/or.2017.5815 | DOI Listing |
Int J Mol Sci
October 2021
Department of Life Science, Research Institute for Natural Sciences, Hanyang University, Seoul 04763, Korea.
Int J Mol Med
September 2020
Department of Neurology, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan 610500, P.R. China.
The inflammatory cytokine interleukin (IL)‑1β has been implicated in demyelinating diseases, such as multiple sclerosis and experimental autoimmune encephalomyelitis, and brain degenerative diseases, such as Alzheimer's disease. However, the cellular and molecular mechanisms underlying the damaging effects of IL‑1β on myelination are poorly understood. Therefore, the present study was designed to investigate whether IL‑1β modifies the proliferation and differentiation of oligodendrocyte precursor cells (OPCs) through regulating the miR‑202‑3p/β‑catenin/glioma‑associated oncogene homolog 1 (Gli1) axis.
View Article and Find Full Text PDFOncol Rep
September 2017
Department of Neurosurgery, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, Henan 471003, P.R. China.
Glioma is the most common and aggressive type of primary malignant brain tumour. Increasing evidence has revealed that microRNAs play important roles in multiple biological processes related to glioma occurrence, development, diagnosis, treatment and prognosis. MicroRNA-202 (miR-202) has been studied in several types of human cancer, whereas the biological roles of miR-202 in glioma remain unknown.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!