Morphology dependent catalysis and surface enhanced Raman scattering (SERS) studies using Pd nanostructures in DNA, CTAB and PVA scaffolds.

Dalton Trans

Department of Materials Science and Engineering, Texas A&M University, College Station, Texas TX-77843, USA. and Department of Mechanical Engineering, Texas A&M University, College Station, Texas TX-77843, USA.

Published: July 2017

Palladium nanoparticles (Pd NPs) of three different morphologies viz., nanocubes with cetyltrimethylammonium bromide (CTAB), nanowires with polyvinyl alcohol (PVA) and Pd NPs with deoxyribonucleic acid (DNA) scaffolds were synthesized by UV-irradiation. Catalysis and surface enhanced Raman scattering (SERS) studies were done with the synthesized morphologically distinct Pd nanostructures for the very first time. The catalytic rate was extremely high with Pd nanowires templated with PVA and the order of the catalytic rate was Pd nanowires in PVA > Pd nanocubes in CTAB > DNA-Pd wire-like assemblies. The highest catalytic rate was observed for PVA capped Pd nanowires which is a few hundred fold higher than other metal NP catalysts. Methylene blue (MB) was used as a Raman analyte for the SERS study and the largest EF of 1.9 × 10 at a peak position of 1391 cm was observed with Pd nanowires in the DNA scaffold as a SERS substrate. The order of the SERS EF values was DNA-Pd wire-like assemblies > Pd nanocubes in CTAB > Pd nanowires in PVA. Beyond everything, the present synthesis route is easy, faster, candid, highly reproducible and cost-effective. In the near future, the same protocol could be applied to synthesize other materials for various applications.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c7dt01474kDOI Listing

Publication Analysis

Top Keywords

catalytic rate
12
catalysis surface
8
surface enhanced
8
enhanced raman
8
raman scattering
8
scattering sers
8
sers studies
8
ctab nanowires
8
nanowires pva
8
nanocubes ctab
8

Similar Publications

Polysulfide Tandem Conversion for Lithium-Sulfur Batteries.

Small

January 2025

State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China.

The electrocatalytic conversion of 16-electron multistep polysulfides is crucial for lithium-sulfur batteries, while it is hard to achieve compatibility between intricate sulfur reduction processes and appropriate catalysts. Herein, a tandem conversion strategy is reported to boost multi-step intermediate reactions of polysulfides transformation by designing an electrocatalyst featuring cobalt and zinc sites (Co/Zn), where the Zn serve as sites for the conversion of long-chain lithium polysulfides (LiPSs), promoting the transformation of S to LiS; the Co sites accelerate the kinetics of the subsequent reduction of LiS. This tandem catalysis method not only enhances the conversion of the initial reactants but also provides additional support for the intermediates, thereby facilitating subsequent reactions to maximize capacity.

View Article and Find Full Text PDF

This study focuses on enhancing the water oxidation reaction (WOR) efficacy of dinuclear cobalt complex catalysts from both kinetic (turnover frequency, TOF) and thermodynamic (overpotential, η) perspectives. For this purpose, we synthesized six dinuclear cobalt complexes 1-6 comprising non-innocent ligands with different electronically active substituents (-OMe (1), -Me (2), -H (3), -F (4), -Cl (5), and -CN (6)). The electronic effects on the electrochemical WOR under neutral, acidic, and alkaline conditions were investigated experimentally and computationally.

View Article and Find Full Text PDF

SequenceCraft: machine learning-based resource for exploratory analysis of RNA-cleaving deoxyribozymes.

BMC Bioinformatics

January 2025

International Institute "Solution Chemistry of Advanced Materials and Technologies", ITMO University, Saint-Petersburg, Russian Federation, 191002.

Background: Deoxyribozymes or DNAzymes represent artificial short DNA sequences bearing many catalytic properties. In particular, DNAzymes able to cleave RNA sequences have a huge potential in gene therapy and sequence-specific analytic detection of disease markers. This activity is provided by catalytic cores able to perform site-specific hydrolysis of the phosphodiester bond of an RNA substrate.

View Article and Find Full Text PDF

This study investigates the biosynthesis of iron oxide nanoparticles (FeONPs) using the cell-free supernatant of Pseudomonas fluorescens. The synthesized FeONPs were characterized through UV-VIS, XRD, FTIR, FESEM, EDX, TEM, BET, and VSM analyses. The XRD results confirmed that FeONPs were successfully synthesized and EDX analysis indicated that iron accounted for 89.

View Article and Find Full Text PDF

Customized nano-biocatalysts of laccase have been made using nano-structured polyaniline viz. nano-fibers and nano-tubes, as immobilization supports and a simultaneous comparison between them has been made. Laccases are poly-phenol oxidases having tremendous utility concerning wider areas of application especially in the field of organic and drug syntheses.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!