The effects of sex on the degree of liver damage and human cell engraftment were investigated in immunodeficient urokinase-type plasminogen activator-transgenic (uPA-NOG) mice. Liver damage, measured by serum alanine transaminase (ALT) levels, was compared in male and female uPA-NOG mice of different ages. Male mice had significantly higher ALT levels than females with a median of 334 versus 158 U/L in transgenic homozygous mice, respectively. Mice were transplanted with human adult hepatocytes or fetal liver cells and analyzed for any correlation of engraftment of hepatocytes, liver sinusoidal endothelial cells (LSECs), and hematopoietic cells with the degree of liver damage. Hepatocyte engraftment was measured by human albumin levels in the mouse serum. Higher ALT levels correlated with higher hepatocyte engraftment, resulting in albumin levels in male mice that were 9.6 times higher than in females. LSEC and hematopoietic cell engraftment were measured by flow cytometric analysis of the mouse liver and bone marrow. LSEC and hematopoietic engraftment did not differ between male and female transplant recipients. Thus, the sex of uPA-NOG mice affects the degree of liver damage, which is reflected in the levels of human hepatocyte engraftment. However, the high levels of LSEC engraftment observed in uPA-NOG mice are not further improved among male mice, suggesting that a lower threshold of liver damage is sufficient to enhance endothelial cell engraftment. Previously described sex differences in human hematopoietic stem cell engraftment in immunodeficient mice were not observed in this model.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5509021PMC
http://dx.doi.org/10.3727/215517916X693375DOI Listing

Publication Analysis

Top Keywords

liver damage
20
cell engraftment
16
upa-nog mice
16
degree liver
12
alt levels
12
male mice
12
hepatocyte engraftment
12
mice
11
engraftment
11
liver
9

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!