Topical nitric oxide releasing nanoparticles are effective in a murine model of dermal Trichophyton rubrum dermatophytosis.

Nanomedicine

Department of Medicine (Division of Dermatology), Albert Einstein College of Medicine, Bronx, NY, USA; Department of Physiology & Biophysics, Albert Einstein College of Medicine, Bronx, NY, USA; Department of Dermatology, George Washington School of Medicine and Health Sciences, Washington, DC, USA. Electronic address:

Published: October 2017

Systemic therapies are preferred for treating dermal dermatophytosis due to inadequate penetration of topical agents. However, systemic antifungals are associated with off-target effects and limited tissue penetration, and antimicrobial resistance is a growing concern. To address this, we investigated topical nitric oxide-releasing nanoparticles (NO-np), which have been used against superficial fungal infections and bacterial abscesses. In addition to enhanced penetration and permeation conferred by nanoparticles, nitric oxide, a broad-spectrum multi-mechanistic antimicrobial agent, offers decreased likelihood of resistance development. In the current study, NO-np inhibited Trichophyton rubrum in vitro, as well as in a murine model of dermal dermatophytosis. In mice, NO-np reduced fungal burden after three days, with complete clearance after seven. Furthermore, NO-np decreased tissue IL-2, 6, 10 and TNFα, indicating earlier attenuation of the host inflammatory response and decreased tissue morbidity. Thus, topical NO-np represent an attractive alternative to systemic therapy against dermal T. rubrum infection.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.nano.2017.06.018DOI Listing

Publication Analysis

Top Keywords

topical nitric
8
nitric oxide
8
murine model
8
model dermal
8
trichophyton rubrum
8
dermal dermatophytosis
8
decreased tissue
8
no-np
5
topical
4
oxide releasing
4

Similar Publications

Glaucoma is a chronic optic neuropathy that causes characteristic visual field defects and is considered one of the leading causes of irreversible vision loss worldwide. Lowering intraocular pressure is the only proven treatment for glaucoma. Medical therapy is usually the first-line treatment for open-angle glaucoma and ocular hypertension.

View Article and Find Full Text PDF

Elevated intraocular pressure (IOP) is implicated in the structural and functional damage to the retinal ganglion cells (RGCs) in primary open-angle glaucoma (POAG). Topical IOP lowering agents provide short-term relief, necessitating frequent dosing. Moreover, non-adherence to frequent eyedrops administration contributes significantly to visual field loss and worsens the disease outcome.

View Article and Find Full Text PDF

The pivotal roles played by nitric oxide (NO) in tissue repair, inflammation, and immune response have spurred the development of a wide range of NO-releasing biomaterials. More recently, 3D printing techniques have significantly broadened the potential applications of polymeric biomaterials in biomedicine. In this context, the development of NO-releasing biomaterials that can be fabricated through 3D printing techniques has emerged as a promising strategy for harnessing the benefits of localized NO release from implantable devices, tissue regeneration scaffolds, or bandages for topical applications.

View Article and Find Full Text PDF

The Antimicrobial Effects of Nitric Oxide: A Narrative Review.

Nitric Oxide

January 2025

Harvard Medical School, Boston, MA, USA; Division of Pediatric Critical Care Medicine, Massachusetts General Hospital for Children, Boston, MA, USA. Electronic address:

Nitric oxide (NO) is a versatile endogenous molecule with multiple physiological roles, including neurotransmission, vasodilation, and immune regulation. As part of the immune response, NO exerts antimicrobial effects by producing reactive nitrogen species (RNS). These RNS combat pathogens via mechanisms such as DNA deamination, S-nitrosylation of thiol groups, and lipid peroxidation, leading to disruptions in microbial cell membranes and vital protein functions.

View Article and Find Full Text PDF

The concentrations of nasal nitric oxide (nNO) vary in patients with chronic rhinosinusitis (CRS) supposedly depending upon whether the paranasal ostia are open or obstructed. Our aim was to assess whether nNO levels and their response to topical xylometazoline (a local vasoconstrictor used to alleviate nasal congestion) in patients with CRS differ between those with open or obstructed ostia and if the results were altered by the use of nasal corticosteroids. Methodology: Sixty-six patients with CRS (43% with nasal polyps) or recurrent acute rhinosinusitis and 23 healthy controls were included.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!