Pressurized Microcystis can help to remove nitrate from eutrophic water.

Bioresour Technol

Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Dong Chuan Road 500, Shanghai 200241, PR China.

Published: January 2018

The aim of this study was to investigate the feasibility of using harmful cyanobacterium Microcystis to help remove nitrate from eutrophic water. The results showed that after treatment by pressurization at 0.4MPa, Microcystis quickly sank to the bottom. Pressurization did not significantly affect the viability of Microcystis and this cyanobacterium maintained high viability over three days under dark/anoxic conditions. Meanwhile, the amount of dissolved organic carbon (DOC) secreted from living Microcystis cells reached 2.48mgCmg Chl a, and a significant enhancement of pressurized Microcystis on nitrate removal at the sediment-water interface was observed, with a 2.85-fold increase in the specific NO-N removal rate. The results of this study support the novel idea that harmful Microcystis could be converted to a carbon source for removing nitrate from eutrophic water by a simple pressurization measure.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biortech.2017.07.015DOI Listing

Publication Analysis

Top Keywords

nitrate eutrophic
12
eutrophic water
12
pressurized microcystis
8
microcystis help
8
help remove
8
remove nitrate
8
microcystis
6
nitrate
4
water aim
4
aim study
4

Similar Publications

Xiangshan Bay, one of China's most eutrophic semi-enclosed bays, was studied to examine the seasonal distributions of salinity, temperature, nutrients, and nitrate isotopes (δN and δO) to elucidate seasonal variations in nitrate sources and the key factors driving nitrogen level fluctuations. Based on nitrate δN (6.1-8.

View Article and Find Full Text PDF

A mechanistic model for determining factors that influence inorganic nitrogen fate in corn cultivation.

Environ Sci Process Impacts

January 2025

Department of Civil and Environmental Engineering, University of Pittsburgh, Pittsburgh, PA, USA.

Conventional practices for inorganic nitrogen fertilizer are highly inefficient leading to excess nitrogen in the environment. Excess environmental nitrogen induces ecological (, hypoxia, eutrophication) and public health (, nitrate contaminated drinking water) consequences, motivating adoption of management strategies to improve fertilizer use efficiency. Yet, how to limit the environmental impacts from inorganic nitrogen fertilizer while maintaining crop yields is a persistent challenge.

View Article and Find Full Text PDF

Nitrogen source type modulates heat stress response in coral symbiont ().

Appl Environ Microbiol

January 2025

Department of Marine Sciences, University of Connecticut, Groton, Connecticut, USA.

Ocean warming due to climate change endangers coral reefs, and regional nitrogen overloading exacerbates the vulnerability of reef-building corals as the dual stress disrupts coral-Symbiodiniaceae mutualism. Different forms of nitrogen may create different interactive effects with thermal stress, but the underlying mechanisms remain elusive. To address the gap, we measured and compared the physiological and transcriptional responses of the Symbiodiniaceae to heat stress (31°C) when supplied with different types of nitrogen (nitrate, ammonium, or urea).

View Article and Find Full Text PDF

Effectiveness Overview of Agricultural Conservation Practices for Water Quality Improvement Part II.

J Nat Resour Agric Ecosyst

January 2024

Office of Research and Development, USA Environmental Protection Agency, Research Triangle Park, North Carolina, USA.

Article Synopsis
  • Significant government investment in agricultural conservation practices (ACPs) aimed at improving water quality is not fully effective, with ongoing issues of eutrophication and hypoxia in water bodies.
  • An overview of ten ACPs reveals differences in performance and cost-effectiveness, particularly in reducing sediment, nitrogen (N), and phosphorus (P), with only three ACPs effectively addressing all three constituents.
  • The article suggests that certain water management practices are notably effective in nutrient reduction, while others like conservation crop rotation show potential for economic benefits, underscoring the need for better financial prioritization and long-term monitoring to enhance outcomes.
View Article and Find Full Text PDF

The Salton Sea (SS), California's largest inland lake at 816 square kilometers, formed in 1905 from a levee breach in an area historically characterized by natural wet-dry cycles as Lake Cahuilla. Despite more than a century of untreated agricultural drainage inputs, there has not been a systematic assessment of nutrient loading, cycling, and associated ecological impacts at this iconic waterbody. The lake is now experiencing unprecedented degradation, particularly following the 2003 Quantification Settlement Agreement-the largest agricultural-to-urban water transfer in the United States.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!