Two energy crops (maize and soybean) were used in the remediation of cadmium-contaminated soils. These crops were used because they are fast growing, have a large biomass and are good sources for bioenergy production. The total accumulation of cadmium in maize and soybean plants was 393.01 and 263.24μg pot, respectively. The rhizosphere bacterial community composition was studied by MiSeq sequencing. Phylogenetic analysis was performed using 16S rRNA gene sequences. The rhizosphere bacteria were divided into 33 major phylogenetic groups according to phyla. The dominant phylogenetic groups included Proteobacteria, Acidobacteria, Actinobacteria, Gemmatimonadetes, and Bacteroidetes. Based on principal component analysis (PCA) and unweighted pair group with arithmetic mean (UPGMA) analysis, we found that the bacterial community was influenced by cadmium addition and bioenergy cropping. Three molecular ecological networks were constructed for the unplanted, soybean- and maize-planted bacterial communities grown in 50mgkg cadmium-contaminated soils. The results indicated that bioenergy cropping increased the complexity of the bacterial community network as evidenced by a higher total number of nodes, the average geodesic distance (GD), the modularity and a shorter geodesic distance. Proteobacteria and Acidobacteria were the keystone bacteria connecting different co-expressed operational taxonomic units (OTUs). The results showed that bioenergy cropping altered the topological roles of individual OTUs and keystone populations. This is the first study to reveal the effects of bioenergy cropping on microbial interactions in the phytoremediation of cadmium-contaminated soils by network reconstruction. This method can greatly enhance our understanding of the mechanisms of plant-microbe-metal interactions in metal-polluted ecosystems.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ecoenv.2017.07.019 | DOI Listing |
Microb Ecol
January 2025
IRD, UMR ENTROPIE, 15 Avenue René Cassin, CS 92003, 97744, Saint Denis Cedex 9, La Réunion, France.
The marine microbiome arouses an increasing interest, aimed at better understanding coral reef biodiversity, coral resilience, and identifying bioindicators of ecosystem health. The present study is a microbiome mining of three environmentally contrasted sites along the Hermitage fringing reef of La Réunion Island (Western Indian Ocean). This mining aims to identify bioindicators of reef health to assist managers in preserving the fringing reefs of La Réunion.
View Article and Find Full Text PDFSci Rep
January 2025
Center for Research and Conservation of Biodiversity, Department of Environmental Biology, Institute of Biology, Jan Kochanowski University, Uniwersytecka 7, 25-406, Kielce, Poland.
Our understanding of the basic relationships of microbiota associated with flowers is still quite limited, especially regarding parasitic plant species. The transient nature of flower parts such as pistil stigmas provides a unique opportunity for temporal investigations. This is the first report of the analysis of bacterial and fungal communities associated with the pistil stigmas of the lucerne parasite, Orobanche lutea.
View Article and Find Full Text PDFPharmacoepidemiol Drug Saf
February 2025
Graduate School of Health, University of Technology Sydney, Sydney, Australia.
Background: Drug shortages are an increasing and worldwide problem. Oral antibiotics are one of the most used medicines worldwide and have recently been affected by drug shortages. Despite this, little is known about the impact of antibiotic shortages on prescribing practices.
View Article and Find Full Text PDFJ Appl Microbiol
January 2025
College of Life Sciences, Nanjing Normal University, Nanjing 210023, China.
Aim: This study was dedicated to investigating the role of sulfur metabolic processes in sulfate-reducing bacteria in plant resistance to heavy metal contamination.
Methods And Results: We constructed sulfate-reducing bacterial communities based on the functional properties of sulfate-reducing strains, and then screened out the most effective sulfate-reducing bacterial community SYN1, that prevented Cd and Pb uptake in rice through hydroponic experiment. This community lowered Cd levels in the roots and upper roots by 36.
ISME J
January 2025
Australian Antarctic Program Partnership (AAPP), Institute for Marine and Antarctic Studies, University of Tasmania, 20 Castray Esplanade, Battery Point, TAS, 7004, Australia.
Iron plays a pivotal role in regulating ocean primary productivity. Iron is supplied from diverse sources such as the atmosphere and the geosphere, and hence iron biogeochemical research has focused on identifying and quantifying such sources of "new" iron. However, the recycling of this new iron fuels up to 90% of the productivity in vast oceanic regions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!