Subthalamic deep brain stimulation sweet spots and hyperdirect cortical connectivity in Parkinson's disease.

Neuroimage

Unit of Functional Neurosurgery, Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK; Victor Horsley Department of Neurosurgery, National Hospital for Neurology and Neurosurgery, Queen Square, London, WC1N 3BG, UK.

Published: September 2017

AI Article Synopsis

Article Abstract

Objectives: Firstly, to identify subthalamic region stimulation clusters that predict maximum improvement in rigidity, bradykinesia and tremor, or emergence of side-effects; and secondly, to map-out the cortical fingerprint, mediated by the hyperdirect pathways which predict maximum efficacy.

Methods: High angular resolution diffusion imaging in twenty patients with advanced Parkinson's disease was acquired prior to bilateral subthalamic nucleus deep brain stimulation. All contacts were screened one-year from surgery for efficacy and side-effects at different amplitudes. Voxel-based statistical analysis of volumes of tissue activated models was used to identify significant treatment clusters. Probabilistic tractography was employed to identify cortical connectivity patterns associated with treatment efficacy.

Results: All patients responded well to treatment (46% mean improvement off medication UPDRS-III [p < 0.0001]) without significant adverse events. Cluster corresponding to maximum improvement in tremor was in the posterior, superior and lateral portion of the nucleus. Clusters corresponding to improvement in bradykinesia and rigidity were nearer the superior border in a further medial and posterior location. The rigidity cluster extended beyond the superior border to the area of the zona incerta and Forel-H field. When the clusters where averaged, the coordinates of the area with maximum overall efficacy was X = -10(-9.5), Y = -13(-1) and Z = -7(-3) in MNI(AC-PC) space. Cortical connectivity to primary motor area was predictive of higher improvement in tremor; whilst that to supplementary motor area was predictive of improvement in bradykinesia and rigidity; and connectivity to prefrontal cortex was predictive of improvement in rigidity.

Interpretation: These findings support the presence of overlapping stimulation sites within the subthalamic nucleus and its superior border, with different cortical connectivity patterns, associated with maximum improvement in tremor, rigidity and bradykinesia.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6581538PMC
http://dx.doi.org/10.1016/j.neuroimage.2017.07.012DOI Listing

Publication Analysis

Top Keywords

cortical connectivity
16
maximum improvement
12
improvement tremor
12
superior border
12
deep brain
8
brain stimulation
8
parkinson's disease
8
predict maximum
8
improvement
8
rigidity bradykinesia
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!