Axl tyrosine kinase has been shown to be involved in multiple pathways contributing to tumor development, angiogenesis, and metastasis. High Axl expression has been observed in many human tumors where it appears to confer aggressive tumor behavior. Here we present several series of dual Axl-VEGF-R2 kinase inhibitors based on extensive optimization of an acyl diaminotriazole. It was hypothesized that dual inhibition of these two receptor tyrosine kinases may have a synergistic affect in inhibiting tumor angiogenesis and metastasis. One of these molecules, R916562 showed comparable activity to Sunitinib in two mouse tumor xenograft models and a mouse corneal micropocket model.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bmcl.2017.06.071DOI Listing

Publication Analysis

Top Keywords

angiogenesis metastasis
8
discovery dual
4
dual axl/vegf-r2
4
axl/vegf-r2 inhibitors
4
inhibitors potential
4
potential anti-angiogenic
4
anti-angiogenic anti-metastatic
4
anti-metastatic drugs
4
drugs cancer
4
cancer chemotherapy
4

Similar Publications

Cuproptosis: A new mechanism for anti-tumour therapy.

Pathol Res Pract

December 2024

First Teaching Hospital, Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300193,  China; Graduate School of Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.

As an indispensable trace metal element in the organism, copper acts as a key catalytic cofactor in a wide range of biological processes. Copper homeostasis disorders can be caused by either copper excess or deficiency, and copper homeostasis disorders will affect the normal physiological functions of cells and induce cell death through a variety of mechanisms, such as the emerging cuproptosis model. The imbalance of copper homeostasis will lead to the occurrence of cancer, and copper is a key factor in cell signalling, so copper is involved in the development of cancer by promoting cell proliferation, angiogenesis and metastasis, etc.

View Article and Find Full Text PDF

Addition of Bevacizumab to Chemotherapy and Its Impact on Clinical Efficacy in Cervical Cancer: A Systematic Review and Meta-Analysis.

Pharmacy (Basel)

December 2024

Discipline of Social and Administrative Pharmacy, School of Pharmaceutical Sciences, Universiti Sains Malaysia, George Town 11800, Penang, Malaysia.

: Cervical cancer is the third leading cause of cancer-related mortality in females. One of the most successful therapeutic modalities to date is suppressing vascular endothelial growth factor (VEGF)-mediated angiogenesis. Bevacizumab is a monoclonal antibody that targets VEGF-A.

View Article and Find Full Text PDF

In Silico Analysis of Triamterene as a Potential Dual Inhibitor of VEGFR-2 and c-Met Receptors.

J Xenobiot

December 2024

Cancer Biology and Therapy Laboratory, School of Applied and Health Sciences, London South Bank University, London SE1 0AA, UK.

The vascular endothelial growth factor receptor 2 (VEGFR2) and the hepatocyte growth factor receptor (C-Met) are critical receptors for signaling pathways controlling crucial cellular processes such as cell growth, angiogenesis and tissue regeneration. However, dysregulation of these proteins has been reported in different diseases, particularly cancer, where these proteins promote tumour growth, invasiveness, metastasis and resistance to conventional therapies. The identification of dual inhibitors targeting both VEGFR-2 and c-Met has emerged as a strategic therapeutic approach to overcome the limitations and resistance mechanisms associated with single-target therapies in clinical settings.

View Article and Find Full Text PDF

Regulation of Oxygen in the Tumor Microenvironment Synergizes with Immunotherapy to Suppress Tumor Progression.

J Funct Biomater

November 2024

Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.

Hypoxia represents a crucial characteristic of the tumor microenvironment, which is closely related to cell proliferation, angiogenesis, and metabolic responses. These factors will further promote tumor progression, increase tumor invasion, and enhance tumor metastasis potential. A hypoxic microenvironment will also inhibit the activity of infiltrated immune cells in the tumor microenvironment, leading to the failure of cancer immunotherapy.

View Article and Find Full Text PDF

Personalized Vascularized Tumor Organoid-on-a-Chip for Tumor Metastasis and Therapeutic Targeting Assessment.

Adv Mater

December 2024

Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Department of Chemistry, Fudan University, Shanghai, 200032, China.

While tumor organoids have revolutionized cancer research by recapitulating the cellular architecture and behaviors of real tumors in vitro, their lack of functional vasculature hinders their attainment of full physiological capabilities. Current efforts to vascularize organoids are struggling to achieve well-defined vascular networks, mimicking the intricate hierarchy observed in vivo, which restricts the physiological relevance particularly for studying tumor progression and response to therapies targeting the tumor vasculature. An innovative vascularized patient-derived tumor organoids (PDTOs)-on-a-chip with hierarchical, tumor-specific microvasculature is presented, providing a versatile platform to explore tumor-vascular dynamics and antivascular drug efficacy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!