Assessing the ability of DFT methods to describe static electron correlation effects: CO core level binding energies as a representative case.

J Chem Phys

Departament de Ciència de Materials i Química Física & Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, C/Martí i Franquès 1, 08028 Barcelona, Spain.

Published: July 2017

We use a total energy difference approach to explore the ability of various density functional theory based methods in accounting for the differential effect of static electron correlation on the C(1s) and O(1s) core level binding energies (BEs) of the CO molecule. In particular, we focus on the magnitude of the errors of the computed C(1s) and O(1s) BEs and on their relative difference as compared to experiment and to previous results from explicitly correlated wave functions. Results show that the different exchange-correlation functionals studied here behave rather erratically and a considerable number of them lead to large errors in the BEs and/or the BE shifts. Nevertheless, the TPSS functional, its TPSSm and RevTPSS derivations, and its corresponding hybrid counterpart, TPSSh, perform better than average and provide BEs and BE shifts in good agreement with experiment.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.4991833DOI Listing

Publication Analysis

Top Keywords

static electron
8
electron correlation
8
core level
8
level binding
8
binding energies
8
c1s o1s
8
assessing ability
4
ability dft
4
dft methods
4
methods describe
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!