Japanese encephalitis virus counteracts BST2 restriction via its envelope protein E.

Virology

State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China. Electronic address:

Published: October 2017

It has been well documented that BST2 restricts the release of enveloped viruses by cross-linking newly produced virions to the cell membrane. However, it is less clear whether and how BST2 inhibits the release of enveloped viruses which bud via the secretory pathway. Here, we demonstrated that BST2 restricts the release of Japanese encephalitis virus (JEV) whose budding occurs at the ER-Golgi intermediate compartment, and in turn, JEV infection downregulates BST2 expression. We further found that the JEV envelope protein E, but not other viral components, significantly downregulates BST2 with the viral protein M playing an auxiliary role in the process. Envelope protein E-mediated BST2 downregulation appears to undergo lysosomal degradation pathway. Additional study revealed that the transmembrane domain and the coiled-coil domain (CC) of BST2 are the target domains of viral protein E and that the N- and C-terminal membrane anchors and the CC domain of BST2 are essential for blocking JEV release. Our results together indicate that the release of enveloped viruses whose budding take place in an intracellular compartment can be restricted by BST2.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7111294PMC
http://dx.doi.org/10.1016/j.virol.2017.07.008DOI Listing

Publication Analysis

Top Keywords

envelope protein
12
release enveloped
12
enveloped viruses
12
bst2
10
japanese encephalitis
8
encephalitis virus
8
bst2 restricts
8
restricts release
8
downregulates bst2
8
viral protein
8

Similar Publications

Zika virus (ZIKV) infection can result in a birth defect of the brain called microcephaly and other severe fetal brain defects. ZIKV enters the susceptible host cells by endocytosis, which is mediated by the interaction of the envelope (E) glycoprotein with cellular surface receptor molecules. However, the cellular factors that used by the ZIKV to gain access to host cells remains elusive.

View Article and Find Full Text PDF

Since the pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was first reported from Wuhan, China, there has been a surge in scientific research to find a permanent cure for the disease. The main challenge in effective drug discovery is the continuously mutating nature of the SARS-CoV-2 virus. Thus, we have used the I-TASSER modeling to predict the structure of the SARS-CoV-2 viral envelope protein followed by combinatorial computational assessment to predict its putative potential small molecule inhibitors.

View Article and Find Full Text PDF

Oogenesis involves a novel nuclear envelop remodeling mechanism in Schmidtea mediterranea.

Dev Biol

December 2024

Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA; Howard Hughes Medical Institute, Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA. Electronic address:

The cell nuclei of Ophisthokonts, the eukaryotic supergroup defined by fungi and metazoans, is remarkable in the constancy of their double-membraned structure in both somatic and germ cells. Such remarkable structural conservation underscores common and ancient evolutionary origins. Yet, the dynamics of disassembly and reassembly displayed by Ophisthokont nuclei vary extensively.

View Article and Find Full Text PDF

Targeting nuclear mechanics is emerging as a promising therapeutic strategy for sensitizing cancer cells to immunotherapy. Inhibition of the mechano-sensory kinase ATR leads to mechanical vulnerability of cancer cells, causing nuclear envelope softness and collapse and activation of the cGAS-STING-mediated innate immune response. Finding novel compounds that interfere with the non-canonical role of ATR in controlling nuclear mechanics presents an intriguing therapeutic opportunity.

View Article and Find Full Text PDF

Background: Serology for dengue viruses (DENV) and Zika virus (ZIKV) has been hindered by antibody cross-reactivity, which limits the utility of these tests for surveillance and assessment of sero-status. Our aim was to develop a multiplexed IgG-based assay with increased accuracy to assess the history of previous DENV and ZIKV infections.

Methods: We developed and assessed the analytical performance of a sample-sparing, multiplexed, microsphere-based serological assay using domain III of the envelope protein (EDIII) of DENV serotypes 1-4 and ZIKV, the most variable region between each virus.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!