Measurement of neutron dose in the compensator IMRT treatment.

Appl Radiat Isot

Department of Engineering, Science and Research Branch, Islamic Azad, University, Tehran, Iran. Electronic address:

Published: October 2017

A radiation treatment delivery technique, intensity modulated radiation therapy (IMRT), has found widespread use in the treatment of cancers. One of IMRT implementing methods is IMRT compensator based, which the modulation are done by high Z materials. When photons with energies higher than 8MV interact with high Z material in path, Photoneutrons are produced. In this study, the effect of compensator on photoneutron production was investigated. The Monte Carlo code MCNPX was used to calculate the neutron dose equivalent as a function of the depth in phantom with and without compensator. Measurements were made using CR-39 track-etched detectors. CR-39 detectors, were cut in dimensions of 2.5×2.5 cm by laser, placed in different depths of slab phantom and then irradiated by 18MV photons. Same procedure was performed with the compensator present and absent. The measured data were compared with MCNP calculations. In both experimental and simulation results, neutron dose equivalent when compensator used, was less than non-compensator field. The calculated neutron dose equivalent was maximum at surface and decreased exponentially by increasing depth, but in experimental data, the neutron dose equivalent reached a maximum at approximately 3cm depth in the phantom and beyond which decreased with depth.CR-39 calibration was carried out in air, by considering that neutron energy spectrum changes toward thermal neutrons by depth in phantom increasing, it is suggested that for measuring equivalent neutron dose at phantom depth, should have proper neutron calibration in terms of energy spectrum.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.apradiso.2017.06.013DOI Listing

Publication Analysis

Top Keywords

neutron dose
24
dose equivalent
16
depth phantom
12
energy spectrum
8
neutron
7
dose
6
compensator
6
equivalent
5
depth
5
phantom
5

Similar Publications

This study presents a compact accelerator-driven neutron source design with a thermal neutron port and an epithermal neutron port for Boron Neutron Capture Therapy (BNCT), based on 10 mA 2.5 MeV protons bombarding on a 100 μm thick disc-shaped Li target with a diameter of 10 cm. The moderator consists of 2 parts, the epithermal neutron moderator and the thermal neutron moderator.

View Article and Find Full Text PDF

Fractionated alpha and mixed beam radiation promote stronger pro-inflammatory effects compared to acute exposure and trigger phagocytosis.

Front Cell Neurosci

December 2024

Department of Molecular Biosciences, Centre for Radiation Protection Research, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden.

Introduction And Methods: Aiming to evaluate safety aspects of a recently proposed approach to target Alzheimer's disease, we mimicked a complex boron neutron capture therapy field using a mixed beam consisting of high- and low-linear energy transfer (LET) radiation, Am alpha particles (α) and/or X-ray radiation respectively, in human microglial (HMC3) cells.

Results: Acute exposure to 2 Gy X-rays induced the strongest response in the formation of γH2AX foci 30 min post irradiation, while α- and mixed beam-induced damage (α:X-ray = 3:1) sustained longer. Fractionation of the same total dose (0.

View Article and Find Full Text PDF

The effects of galactic cosmic radiation on reproductive physiology remain largely unknown. We determined the impact of near-continuous low-dose-rate Californium-252 neutron irradiation (1 mGy/day) as a space-relevant analog on litter size and number of resorptions at embryonic day (E) 12.5 (n = 19 radiated dams, n = 20 controls) and litter size, number of resorptions, fetal growth, and placental signaling and transcriptome (RNA sequencing) at E18.

View Article and Find Full Text PDF

Mechanical changes in porcine cortical costal bone following fast neutron irradiation.

Appl Radiat Isot

December 2024

Department of Physics and Astronomy, McMaster University, Hamilton, ON L8S 4L8, Canada.

We report changes in Young's Modulus and breaking strength in compact costal porcine bone (Yorkshire breed, n = 9) subjected to escalating doses up to 4.0 Gy of fast neutrons, from a Li(p,n)Be reaction. The mean neutron energy was 233 keV.

View Article and Find Full Text PDF

Radiobiological studies are ongoing to understand the consequences of internal exposure to neutron-activated radioactive microparticles, which were sprayed over experimental rats and mice. Special attention in these experiments is given to internal irradiation with radioactive microparticles with short-lived neutron-activated radionuclides 31Si (T1/2 = 2.62 h) and 56Mn (T1/2 = 2.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!