Purpose: We have demonstrated the ability to identify coronary calcium, a reliable biomarker of coronary artery disease, using nongated, 2-shot, dual energy (DE) chest x-ray imaging. Here we will use digital simulations, backed up by measurements, to characterize DE calcium signals and the role of potential confounds such as beam hardening, x-ray scatter, cardiac motion, and pulmonary artery pulsation. For the DE calcium signal, we will consider quantification, as compared to CT calcium score, and visualization.
Methods: We created stylized and anatomical digital 3D phantoms including heart, lung, coronary calcium, spine, ribs, pulmonary artery, and adipose. We simulated high and low kVp x-ray acquisitions with x-ray spectra, energy dependent attenuation, scatter, ideal detector, and automatic exposure control (AEC). Phantoms allowed us to vary adipose thickness, cardiac motion, etc. We used specialized dual energy coronary calcium (DECC) processing that includes corrections for scatter and beam hardening.
Results: Beam hardening over a wide range of adipose thickness (0-30 cm) reduced the change in intensity of a coronary artery calcification (ΔI ) by < 3% in DECC images. Scatter correction errors of ±50% affected the calcium signal (ΔI ) in DECC images ±9%. If a simulated pulmonary artery fills with blood between exposures, it can give rise to a residual signal in DECC images, explaining pulmonary artery visibility in some clinical images. Residual misregistration can be mostly compensated by integrating signals in an enlarged region encompassing registration artifacts. DECC calcium score compared favorably to CT mass and volume scores over a number of phantom perturbations.
Conclusion: Simulations indicate that proper DECC processing can faithfully recover coronary calcium signals. Beam hardening, errors in scatter estimation, cardiac motion, calcium residual misregistration etc., are all manageable. Simulations are valuable as we continue to optimize DE coronary calcium image processing and quantitative analysis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/mp.12474 | DOI Listing |
BMC Prim Care
January 2025
Division of Family Medicine and Primary Care, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Huddinge, Sweden.
Aims: To study differences in cardiovascular prevention and hypertension management in primary care in men and women, with comparisons between public and privately operated primary health care (PHC).
Methods: We used register data from Region Stockholm on collected prescribed medication and registered diagnoses, to identify patients aged 30 years and above with hypertension. Age-adjusted logistic regression was used to calculate odds ratios (ORs) with 99% confidence intervals (99% CIs) using public PHC centers as referents.
J Clin Med
January 2025
Institute of Cardiology, Istanbul University-Cerrahpaşa, 34098 Istanbul, Türkiye.
: Familial hypercholesterolemia (FH) is a monogenic dyslipidemia that leads to early cardiovascular events. Subclinical atherosclerosis refers to the formation of atheromatous plaques in arterial beds before any clinical events. In our study, we investigated the presence, extent, and independent predictors of subclinical atherosclerosis among patients diagnosed with FH.
View Article and Find Full Text PDFJ Clin Med
January 2025
Department of Cardiovascular Surgery, Institute Insure, German Heart Center Munich, School of Medicine & Health, Technical University of Munich, Lazarettstrasse 36, 80636 Munich, Germany.
: In the presence of porcelain aorta (PA), transcatheter aortic valve replacement (TAVR) has become a class I therapeutic indication for the treatment of severe aortic valve stenosis. To date, few studies have analyzed the clinical outcomes of TAVR in PA patients. We aim to analyze the calcification patterns of the thoracic aorta in PA patients and to evaluate their clinical implications for TAVR procedures.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital, Taoyuan Branch, Taoyuan 33304, Taiwan.
The electrophysiological mechanisms underlying melatonin's actions and the electrophysiological consequences of superimposed therapeutic hypothermia (TH) in preventing cardiac ischemia-reperfusion (IR) injury-induced arrhythmias remain largely unknown. This study aimed to unveil these issues using acute IR-injured hearts. Rabbits were divided into heart failure (HF), HF+melatonin, control, and control+melatonin groups.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
PhysioLab, University of Florence, 50019 Sesto Fiorentino, Italy.
In maximally Ca-activated demembranated fibres from the mammalian skeletal muscle, the depression of the force by lowering the temperature below the physiological level (~35 °C) is explained by the reduction of force in the myosin motor. Instead, cooling is reported to not affect the force per motor in Ca-activated cardiac trabeculae from the rat ventricle. Here, the mechanism of the cardiac performance depression by cooling is reinvestigated with fast sarcomere-level mechanics.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!