In this study, a new multiplex RT-PCR method for detecting various viral genes in patients with rash and fever illnesses (RFIs) was constructed. New primer sets were designed for detection of herpes simplex viruses 1 and 2 (HSV1 and 2), and Epstein-Barr virus (EBV). The newly designed and previously reported primer sets were used to detect 13 types of RFI-associated viruses by multiplex RT-PCR assay systems. Moreover, to eliminate non-specific PCR products, a double-stranded specific DNase was used to digest double-stranded DNA derived from the templates in clinical specimens. RFI-associated viruses were detected in 77.0% of the patients (97/126 cases) by the presented method, multiple viruses being identified in 27.8% of the described cases (35/126 cases). Detected viruses and clinical diagnoses were compatible in 32.5% of the patients (41/126 cases). Sensitivity limits for these viruses were estimated to be 10 -10 copies/assay. Furthermore, non-specific PCR products were eliminated by a double-stranded specific DNase with no influence on sensitivity. These results suggest that this method can detect various RFI-associated viruses in clinical specimens with high sensitivity and specificity.

Download full-text PDF

Source
http://dx.doi.org/10.1111/1348-0421.12502DOI Listing

Publication Analysis

Top Keywords

rfi-associated viruses
12
method detecting
8
rash fever
8
viruses
8
viruses multiplex
8
multiplex rt-pcr
8
primer sets
8
non-specific pcr
8
pcr products
8
double-stranded specific
8

Similar Publications

In this study, a new multiplex RT-PCR method for detecting various viral genes in patients with rash and fever illnesses (RFIs) was constructed. New primer sets were designed for detection of herpes simplex viruses 1 and 2 (HSV1 and 2), and Epstein-Barr virus (EBV). The newly designed and previously reported primer sets were used to detect 13 types of RFI-associated viruses by multiplex RT-PCR assay systems.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!