Estimation of the residual strength of the soil on the landslide sliding surface is essential for analyzing reactivated landslides. This study investigated the influence of over-consolidation ratio (OCR) and shear rate on the residual strength of SM-type (silty sand) landslide soils in the Three Gorge Reservoir using ring shear tests under drained conditions. A series of ring shear tests were conducted to measure the drained residual strength under over-consolidation ratios of 1-12 and shear rates of 0.06-30.00 mm/min. Test results showed that residual strengths of SM-type landslide soils were not affected significantly by the over-consolidation process. The effect of shear rate on residual strength did not exhibit a regular pattern at shear rates of 0.06-10.00 mm/min, and behaved negatively at a high shear rate of 30 mm/min. The reduction in residual strength at higher shear rates may be attributable to increases in the water content of the shear zone and the amount of finer particles, due to particle breakage and/or larger grains being pushed from the shear zone.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5511176PMC
http://dx.doi.org/10.1038/s41598-017-05749-4DOI Listing

Publication Analysis

Top Keywords

residual strength
24
shear rate
16
rate residual
12
shear rates
12
shear
10
silty sand
8
landslide soils
8
ring shear
8
shear tests
8
shear zone
8

Similar Publications

To investigate the changes in the strength and deformation of the blast load-damaged sandstone roof plate under cyclic loading and unloading conditions at different confining pressures, a triaxial loading device was used to carry out graded cyclic unloading tests on specimens with different degrees of damage, and the test results were summarized. The effects of blast-load-induced damage, confining pressure and loading stage on the strength, cohesion, internal friction angle, residual strain and volumetric strain were analyzed. (1) Compared with that of the undamaged specimen at a confining pressure of 0 MPa, the peak stress reductions in the vibration-damaged and blast-damaged specimens were 4.

View Article and Find Full Text PDF

Background: The onset of the COVID-19 pandemic precipitated a rapid shift to virtual care in health care settings, inclusive of mental health care. Understanding clients' perspectives on virtual mental health care quality will be critical to informing future policies and practices.

Objective: This study aimed to outline the process of redesigning and validating the Virtual Client Experience Survey (VCES), which can be used to evaluate client and family experiences of virtual care, specifically virtual mental health and addiction care.

View Article and Find Full Text PDF

In the framework of sustainable development and environmental preservation, this research aims to improve the stability and frost resistance of sulfate saline soil by utilizing industrial solid waste. Geopolymer materials containing fly ash (FA) activated by different NaOH concentrations were studied for study on stabilized soil with saline soil, with NaOH concentrations used ranged from 0.1 to 0.

View Article and Find Full Text PDF

Tunable mechanical properties of PDMS-TMPTMA microcapsules for controlled release in coatings.

Soft Matter

January 2025

School of Materials Engineering, Purdue University, 701 West Stadium Ave, West Lafayette, IN 47907, USA.

Within coating formulations, microcapsules serve as vehicles for delivering compounds like catalysts and self-healing agents. Designing microcapsules with precise mechanical characteristics is crucial to ensure their contents' timely release and minimize residual shell fragments, thereby avoiding adverse impacts on the coating quality. With these constraints in mind, we explored the use of 1 cSt PDMS oil as a diluent (porogen) in trimethylolpropane trimethacrylate (TMPTMA)-based to fabricate microcapsules with customized mechanical properties and submicrometer debris size after shell breakup that can encapsulate a wide range of compounds.

View Article and Find Full Text PDF

Facile synthesis of nitrogen self-doped carbon dots from rapeseed meal for highly sensitive fluorescence detection of baicalein.

Spectrochim Acta A Mol Biomol Spectrosc

December 2024

College of Chemical Engineering, Hubei University of Arts and Science, Xiangyang 441053, Hubei Province, PR China; Hubei Longzhong Laboratory, Xiangyang 441000, Hubei, PR China. Electronic address:

The rapeseed meal, a type of residual by-product of rapeseed oil production was used as the precursor to prepare nitrogen self-doping carbon dots RM-CDs through an easy hydrothermal process. Thanks to the introduction of nitrogen element and oxygen-containing functional groups, RM-CDs had a fluorescence quantum yield of 18.6 %.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!