A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Phthalide Derivatives from Angelica Sinensis Decrease Hemoglobin Oxygen Affinity: A New Allosteric-Modulating Mechanism and Potential Use as 2,3-BPG Functional Substitutes. | LitMetric

Angelica sinensis (AS), one of the most versatile herbal medicines remains widely used due to its multi-faceted pharmacologic activities. Besides its traditional use as the blood-nourishing tonic, its anti-hypertensive, anti-cardiovascular, neuroprotective and anti-cancer effects have been reported. Albeit the significant therapeutic effects, how AS exerts such diverse efficacies from the molecular level remains elusive. Here we investigate the influences of AS and four representative phthalide derivatives from AS on the structure and function of hemoglobin (Hb). From the spectroscopy and oxygen equilibrium experiments, we show that AS and the chosen phthalides inhibited the oxygenated Hb from transforming into the high-affinity "relaxed" (R) state, decreasing Hb's oxygen affinity. It reveals that phthalides cooperate with the endogenous Hb modulator, 2,3-bisphosphoglycerate (2,3-BPG) to synergetically regulate Hb allostery. From the docking modeling, phthalides appear to interact with Hb mainly through its α/α interface, likely strengthening four (out of six) Hb "tense" (T) state stabilizing salt-bridges. A new allosteric-modulating mechanism is proposed to rationalize the capacity of phthalides to facilitate Hb oxygen transport, which may be inherently correlated with the therapeutic activities of AS. The potential of phthalides to serve as 2,3-BPG substitutes/supplements and their implications in the systemic biology and preventive medicine are discussed.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5511246PMC
http://dx.doi.org/10.1038/s41598-017-04554-3DOI Listing

Publication Analysis

Top Keywords

phthalide derivatives
8
angelica sinensis
8
oxygen affinity
8
allosteric-modulating mechanism
8
phthalides
5
derivatives angelica
4
sinensis decrease
4
decrease hemoglobin
4
oxygen
4
hemoglobin oxygen
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!