Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0074-7696(08)60250-8 | DOI Listing |
Nat Mater
January 2025
Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA.
Cells use 'active' energy-consuming motor and filament protein networks to control micrometre-scale transport and fluid flows. Biological active materials could be used in dynamically programmable devices that achieve spatial and temporal resolution that exceeds current microfluidic technologies. However, reconstituted motor-microtubule systems generate chaotic flows and cannot be directly harnessed for engineering applications.
View Article and Find Full Text PDFCommun Biol
January 2025
Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, GA, 30602, USA.
In mammalian oocytes, large-scale chromatin organization regulates transcription, nuclear architecture, and maintenance of chromosome stability in preparation for meiosis onset. Pre-ovulatory oocytes with distinct chromatin configurations exhibit profound differences in metabolic and transcriptional profiles that ultimately determine meiotic competence and developmental potential. Here, we developed a deep learning pipeline for the non-invasive prediction of chromatin structure and developmental potential in live mouse oocytes.
View Article and Find Full Text PDFPNAS Nexus
January 2025
Department of Biochemistry, University of Geneva, 1211 Geneva, Switzerland.
The microtubule cytoskeleton is a dynamic network essential for many cellular processes, influenced by physicochemical factor, such as temperature, pH, dimer concentration, and ionic environment. In this study, we used in vitro reconstitution assays to examine the effects of four monovalent ions (Na, K, Cl, and Ac) on microtubule dynamics, uncovering distinct effects for each ion. Na was found to increase microtubule dynamicity by raising catastrophe frequency, polymerization and depolymerization speeds, and ultimately reducing microtubule lifetime by 80%.
View Article and Find Full Text PDFJ Chem Inf Model
January 2025
Department of Chemistry, Faculty of Science, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada.
Tau is a microtubule (MT)-associated protein that binds to and stabilizes the MTs of neurons. Due to its intrinsically disordered nature, it undergoes several post-translational modifications (PTMs) that are intricately linked to both the physiological and pathophysiological roles of Tau. Prior research has shown phosphorylation and O-GlcNAcylation to have contrasting effects on Tau aggregation; however, the precise molecular mechanisms and potential synergistic effects of these modifications remain elusive.
View Article and Find Full Text PDFUnlabelled: Melanin pigments block genotoxic agents by positioning on the sun-exposed side of human skin keratinocytes' nucleus. How this position is regulated and its role in genome photoprotection remains unknown. By developing a model of human keratinocytes internalizing extracellular melanin into pigment organelles, we show that keratin 5/14 intermediate filaments mechanically control the 3D perinuclear position of pigments, shielding DNA from photodamage.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!