A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Improved production and characterization of a highly stable laccase from the halophilic bacterium Chromohalobacter salexigens for the efficient delignification of almond shell bio-waste. | LitMetric

Improved production and characterization of a highly stable laccase from the halophilic bacterium Chromohalobacter salexigens for the efficient delignification of almond shell bio-waste.

Int J Biol Macromol

Department of Pharmaceutical Biotechnology, Faculty of Pharmacy and Biotechnology Research Center, Tehran University of Medical Sciences, P.O. Box 14155-6451, Tehran 1417614411, Iran. Electronic address:

Published: December 2017

Extremozymes have gained importance for their ability to efficiently develop the processes in rigorous industrial conditions with incidence in the recycling of especially robust natural wastes. The production of an extracellular laccase from the halophilic bacterium Chromohalobacter salexigens aided for the bio-delignification of almond shell was optimized using response surface methodology followed by one-factor-at-a-time, resulting in an 80-fold increase in the enzyme yield. Out of 10 different medium components, CuSO, ZnSO, glucose, and urea were shown to have the greatest effects on the laccase production. The crude laccase was surprisingly stable against the various solvents, salts, chemicals, pH ranges, and temperatures, and it exhibited a high catalytic efficiency to a wide range of phenolic and non-phenolic substrates. Laccase reduced the kappa number of the lignin of almond shell by approximately 27% without the aid of a mediator, and the delignification efficiency strengthened by up to 58% reduction in kappa number in the used harsh conditions. Due to the high potential of the enzyme in delignification, specifically under extreme conditions, laccase from C. salexigens can be considered as an ideal alternative for chemical treatment methods in cellulose fibres extraction of lignocellulosic bio-wastes or delignification of the lignin and lignin-derived industrial wastes.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2017.07.055DOI Listing

Publication Analysis

Top Keywords

almond shell
12
laccase halophilic
8
halophilic bacterium
8
bacterium chromohalobacter
8
chromohalobacter salexigens
8
kappa number
8
laccase
6
improved production
4
production characterization
4
characterization highly
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!