Objective: Due to limited information from scalp electroencephalographic (EEG) recordings, brain areas driving changes in cardiac rhythm during Temporal lobe (TL) seizures are not clearly identified. Using stereotactic EEG (SEEG) recordings, we aimed at identifying which of the brain regions involved in autonomic control trigger ictal tachycardia.
Methods: The neural activity of several mesial temporal lobe structures including amygdala, hippocampus, insula, and lateral temporal lobe recorded with SEEG were collected during 37 TL seizures in 9 patients, using indices based on High Frequency Activity (HFA). R-R intervals (RR) monitoring and time-frequency spectral analysis were performed to assess parasympathetic (High frequency power (HF)) and sympathetic (Low frequency/High frequency (LF/HF) ratio) reactivities.
Results: Tachycardia was associated with a significant increase in LF/HF ratio and decrease in HF. Autonomic cardiac changes were accompanied by simultaneous SEEG signal changes with an increase in seizure-related HFA in anterior hippocampal formation and amygdala, but not in insula.
Conclusion: In our sample, TL seizures are thus accompanied by an early decrease in parasympathetic control of cardiac rhythm and by an increase of sympathetic tone, concomitant to seizure activity in anterior hippocampus and amygdala.
Significance: These results support a pivotal role of hippocampus and amygdala in tachycardia occurring during TL seizures.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.clinph.2017.06.033 | DOI Listing |
Mol Psychiatry
January 2025
Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China.
To understand the neural mechanism of autism spectrum disorder (ASD) and developmental delay/intellectual disability (DD/ID) that can be associated with ASD, it is important to investigate individuals at an early stage with brain, behavioural and also genetic measures, but such research is still lacking. Here, using the cross-sectional sMRI data of 1030 children under 8 years old, we employed developmental normative models to investigate the atypical development of gray matter volume (GMV) asymmetry in individuals with ASD without DD/ID, ASD with DD/ID and individuals with only DD/ID, and their associations with behavioral and clinical measures and transcription profiles. By extracting the individual deviations of patients from the typical controls with normative models, we found a commonly abnormal pattern of GMV asymmetry across all ASD children: more rightward laterality in the inferior parietal lobe and precentral gyrus, and higher individual variability in the temporal pole.
View Article and Find Full Text PDFNat Commun
January 2025
Department of Clinical and Experimental Epilepsy, Queen Square Institute of Neurology, UCL, London, WC1N 3BG, UK.
Approximately 40% of individuals undergoing anterior temporal lobe resection for temporal lobe epilepsy experience episodic memory decline. There has been a focus on early memory network changes; longer-term plasticity and its impact on memory function are unclear. Our study investigates neural mechanisms of memory recovery and network plasticity over nearly a decade post-surgery.
View Article and Find Full Text PDFNeurocase
January 2025
Department of Ophthalmology, Affiliated Hospital of Guizhou Medical University, Guiyang, P.R. China.
Background: -related disorders are autosomal recessive genetic disorders characterized by movement disorders primarily including ataxia and spasticity, mainly accompanying developmental delay, seizures, and neuroimaging abnormalities. -related spectrum disorder (VSD) may better reflect the characteristics of the disease. So far, the relationship of genotype and phenotype of VSD has not been established.
View Article and Find Full Text PDFJ Alzheimers Dis
January 2025
Department of Neurology, RWTH Aachen University, Aachen, Germany.
Background: Physical activity and fitness are major targets in Alzheimer's disease (AD) preventive research. However, current research is heterogeneous and often disregards the relationship between these parameters and disease outcomes.
Objective: To assess the effects of physical activity and fitness on AD within the context of a multicomponent sports intervention.
Neuroscience
January 2025
Human Communication, Learning, and Development, Faculty of Education, The University of Hong Kong, China.
The human brain possesses the ability to automatically extract statistical regularities from environmental inputs, including visual-graphic symbols and printed units. However, the specific brain regions underlying the statistical learning of these visual-graphic symbols or artificial orthography remain unclear. This study utilized functional magnetic resonance imaging (fMRI) with an artificial orthography learning paradigm to measure brain activities associated with the statistical learning of radical positional regularities embedded in pseudocharacters containing high (100%), moderate (80%), and low (60%) levels of consistency, along with a series of random abstract figures.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!