Taxifolin is a flavonoid in food plants. Kidney 11β-hydroxysteroid dehydrogenase 2 (11β-HSD2) is an NAD-dependent oxidase that inactivates glucocorticoid cortisol (human) or corticosterone (rodents) into biologically inert 11 keto glucocorticoids. The present study investigated the effects of taxifolin on rat and human kidney microsomal 11β-HSD2. Taxifolin noncompetitively inhibited rat and human 11β-HSD2 against steroid substrates, with IC values of 33.08 and 13.14μM, respectively. Administration of 5 and 10mg/kg taxifolin for 30min ex vivo inhibited 11β-HSD2 significantly and also in vivo decreased cortisol metabolism, as shown in the significant increase of area under curve (AUC). This result shows that taxifolin is a potent 11β-HSD2 inhibitor, possibly causing side effects.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.fitote.2017.07.004 | DOI Listing |
Nutrients
December 2024
Centre for Diabetes, Obesity and Endocrinology Research (CDOER), Westmead Institute for Medical Research, Westmead, Sydney, NSW 2145, Australia.
Background: Recent findings have highlighted that abnormal energy metabolism is a key feature of autosomal-dominant polycystic kidney disease (ADPKD). Emerging evidence suggests that nutritional ketosis could offer therapeutic benefits, including potentially slowing or even reversing disease progression. This systematic review aims to synthesise the literature on ketogenic interventions to evaluate the impact in ADPKD.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Department of Clinical Laboratory, School of Medicine, International University of Health and Welfare, Otawara 324-8501, Japan.
Intrauterine growth restriction (IUGR) is a risk factor for postnatal cardiovascular, metabolic, and psychiatric disorders. In most IUGR models, placental dysfunction that causes reduced 11β-hydroxysteroid dehydrogenase 2 (11βHSD2) activity, which degrades glucocorticoids (GCs) in the placenta, resulting in fetal GC overexposure. This overexposure to GCs continues to affect not only intrauterine fetal development itself, but also the metabolic status and neural activity in adulthood through epigenetic changes such as microRNA change, histone modification, and DNA methylation.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu 939-0398, Toyama, Japan.
Recently, we demonstrated that the alopecia observed in vitamin D receptor gene-deficient (-KO) rats is not seen in rats with a mutant VDR(R270L/H301Q), which lacks ligand-binding ability, suggesting that the ligand-independent action of VDR plays a crucial role in maintaining the hair cycle. Since -KO rats also showed abnormalities in the skin, the relationship between alopecia and skin abnormalities was examined. To clarify the mechanism of actions of vitamin D and VDR in the skin, protein composition, and gene expression patterns in the skin were compared among -KO, -R270L/H301Q, and wild-type (WT) rats.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada.
Type 2 diabetes (T2D), the most common form, is marked by insulin resistance and β-cell failure. β-cell dysfunction under high-glucose-high-lipid (HG-HL) conditions is a key contributor to the progression of T2D. This study evaluates the comparative effects of 10 nM semaglutide, 10 nM tirzepatide, and 1 mM metformin, both alone and in combination, on INS-1 β-cell maintenance and function under HG-HL conditions.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Division of Reproductive Sciences, Department of Obstetrics and Gynecology, Duke University School of Medicine, 701 West Main Street, Suite 510, Duke, P.O. Box 90534, Durham, NC 27701, USA.
The mortality rate of ovarian cancer (OC) remains the highest among female gynecological malignancies. Advanced age is the highest risk factor for OC development and progression, yet little is known about the role of the aged tumor microenvironment (TME). We conducted RNA sequencing and lipidomic analysis of young and aged gonadal adipose tissue from rat xenografts before and after OC formation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!