Phase ordering dynamics of reconstituting particles.

Phys Rev E

IFLP-CONICET, Departamento de Física, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, C.C. 67, 1900 La Plata, Argentina.

Published: June 2017

AI Article Synopsis

  • The study explores the dynamics of one-dimensional processes involving the adsorption and desorption of particles (like dimers and trimers), focusing on how these processes interact through their smaller parts (monomers).
  • It highlights the emergence of nonlocal conservation laws and different motion sectors when particles can form or break apart under desorption, particularly noting effects for larger particle groups (k ≥ 3).
  • The research finds that under attractive interactions at low temperatures, the time scales align with established models (Glauber dynamics), indicating a diffusive behavior, while repulsive interactions lead to metastable states that decay more slowly toward a crowded, partially jammed phase.

Article Abstract

We consider the large-time dynamics of one-dimensional processes involving adsorption and desorption of extended hard-core particles (dimers, trimers, ..., k-mers), while interacting through their constituent monomers. Desorption can occur whether or not these latter adsorbed together, which leads to reconstitution of k-mers and the appearance of sectors of motion with nonlocal conservation laws for k≥3. Dynamic exponents of the sector including the empty chain are evaluated by finite-size scaling analyses of the relaxation times embodied in the spectral gaps of evolution operators. For attractive interactions it is found that in the low-temperature limit such time scales converge to those of the Glauber dynamics, thus suggesting a diffusive universality class for k≥2. This is also tested by simulated quenches down to T=0, where a common scaling function emerges. By contrast, under repulsive interactions the low-temperature dynamics is characterized by metastable states which decay subdiffusively to a highly degenerate and partially jammed phase.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevE.95.062130DOI Listing

Publication Analysis

Top Keywords

interactions low-temperature
8
phase ordering
4
dynamics
4
ordering dynamics
4
dynamics reconstituting
4
reconstituting particles
4
particles consider
4
consider large-time
4
large-time dynamics
4
dynamics one-dimensional
4

Similar Publications

The broad temperature adaptability associated with the desolvation process remains a formidable challenge for organic electrolytes in rechargeable metal batteries, especially under low-temperature (LT) conditions. Although a traditional approach involves utilizing electrolytes with a high degree of anion participation in the solvation structure, known as weakly solvation electrolytes (WSEs), the solvation structure of these electrolytes is highly susceptible to temperature fluctuations, potentially undermining their LT performance. To address this limitation, we have devised an innovative electrolyte that harnesses the interplay between solvent molecules, effectively blending strong and weak solvents while incorporating anion participation in a solvation structure that remains mostly unchanged by temperature variations.

View Article and Find Full Text PDF

High-Conductivity, Self-Healing, and Adhesive Ionic Hydrogels for Health Monitoring and Human-Machine Interactions Under Extreme Cold Conditions.

Adv Sci (Weinh)

January 2025

The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China.

Ionic conductive hydrogels (ICHs) are emerging as key materials for advanced human-machine interactions and health monitoring systems due to their unique combination of flexibility, biocompatibility, and electrical conductivity. However, a major challenge remains in developing ICHs that simultaneously exhibit high ionic conductivity, self-healing, and strong adhesion, particularly under extreme low-temperature conditions. In this study, a novel ICH composed of sulfobetaine methacrylate, methacrylic acid, TEMPO-oxidized cellulose nanofibers, sodium alginate, and lithium chloride is presented.

View Article and Find Full Text PDF

Structure and stability of copper nanoclusters on monolayer tungsten dichalcogenides.

Dalton Trans

January 2025

Tyndall National Institute, University College Cork, Lee Maltings, Dyke Parade, Cork, T12 R5CP, Ireland.

Layered materials, such as tungsten dichalcogenides (TMDs), are being studied for a wide range of applications, due to their unique and varied properties. Specifically, their use as either a support for low dimensional catalysts or as an ultrathin diffusion barrier in semiconductor devices interconnect structures are particularly relevant. In order to fully realise these possible applications for TMDs, understanding the interaction between metals and the monolayer they are deposited on is of utmost importance.

View Article and Find Full Text PDF

Unlabelled: Biological diversity is declining across the tree of life, including among prokaryotes. With the increasing awareness of host-associated microbes as potential regulators of eukaryotic host physiology, behavior, and ecology, it is important to understand the implications of declining diversity within host microbiomes on host fitness, ecology, and ecosystem function. We used phytoplankton and their associated environmental microbiomes as model systems to test the independent and interactive effects of declining microbiome diversity with and without other stressors often caused by human activity-elevated temperature and altered nutrient availability.

View Article and Find Full Text PDF

Selection on animal signal form often changes significantly with the environment, yet signal form may itself be environment dependent. Little is known about how variation in individual responses to changing environments affects the relationship between selection and the subsequent evolution of signal traits. To address this question, we assess the effects of variation in temperature on individual signaling and mating behavior responses across temperatures in the wolf spider Schizocosa floridana.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!