AI Article Synopsis

  • OTOCs (out-of-time-order correlators) measure quantum information scrambling but are challenging to experiment with.
  • A new measurement method using a two-point scheme from nonequilibrium quantum thermodynamics offers a clearer interpretation of this scrambling through fluctuations in thermodynamic quantities like work and heat.
  • The study includes a numerical example using a spin chain, demonstrating the method's effectiveness in distinguishing between integrable and ergodic behaviors and its potential to enhance current experimental techniques.

Article Abstract

Scrambling of quantum information can conveniently be quantified by so-called out-of-time-order correlators (OTOCs), i.e., correlators of the type 〈[W_{τ},V]^{†}[W_{τ},V]〉, whose measurements present a formidable experimental challenge. Here we report on a method for the measurement of OTOCs based on the so-called two-point measurement scheme developed in the field of nonequilibrium quantum thermodynamics. The scheme is of broader applicability than methods employed in current experiments and provides a clear-cut interpretation of quantum information scrambling in terms of nonequilibrium fluctuations of thermodynamic quantities, such as work and heat. Furthermore, we provide a numerical example on a spin chain which highlights the utility of our thermodynamic approach when understanding the differences between integrable and ergodic behaviors. We also discuss how the method can be used to extend the reach of current experiments.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevE.95.062127DOI Listing

Publication Analysis

Top Keywords

quantum scrambling
8
current experiments
8
thermodynamics quantum
4
scrambling scrambling
4
scrambling quantum
4
quantum conveniently
4
conveniently quantified
4
quantified so-called
4
so-called out-of-time-order
4
out-of-time-order correlators
4

Similar Publications

Breakdown of the Quantum Distinction of Regular and Chaotic Classical Dynamics in Dissipative Systems.

Phys Rev Lett

December 2024

Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas, Universidad Nacional Autónoma de México, C.P. 04510 Mexico City, Mexico.

Quantum chaos has recently received increasing attention due to its relationship with experimental and theoretical studies of nonequilibrium quantum dynamics, thermalization, and the scrambling of quantum information. In an isolated system, quantum chaos refers to properties of the spectrum that emerge when the classical counterpart of the system is chaotic. However, despite experimental progress leading to longer coherence times, interactions with an environment can never be neglected, which calls for a definition of quantum chaos in dissipative systems.

View Article and Find Full Text PDF

In the era of the Internet of Things (IoT), the transmission of medical reports in the form of scan images for collaborative diagnosis is vital for any telemedicine network. In this context, ensuring secure transmission and communication is necessary to protect medical data to maintain privacy. To address such privacy concerns and secure medical images against cyberattacks, this research presents a robust hybrid encryption framework that integrates quantum, and classical cryptographic methods.

View Article and Find Full Text PDF

Universal Spreading of Conditional Mutual Information in Noisy Random Circuits.

Phys Rev Lett

November 2024

Pritzker School of Molecular Engineering, The University of Chicago, Chicago, Illinois 60637, USA.

We study the evolution of conditional mutual information (CMI) in generic open quantum systems, focusing on one-dimensional random circuits with interspersed local noise. Unlike in noiseless circuits, where CMI spreads linearly while being bounded by the light cone, we find that noisy random circuits with an error rate p exhibit superlinear propagation of CMI, which diverges far beyond the light cone at a critical circuit depth t_{c}∝p^{-1}. We demonstrate that the underlying mechanism for such rapid spreading is the combined effect of local noise and a scrambling unitary, which selectively removes short-range correlations while preserving long-range correlations.

View Article and Find Full Text PDF

Quantum Information Scrambling in Adiabatically Driven Critical Systems.

Entropy (Basel)

November 2024

Departamento de Física Teórica, Atómica y Óptica, Universidad de Valladolid, 47011 Valladolid, Spain.

Quantum information scrambling refers to the spread of the initially stored information over many degrees of freedom of a quantum many-body system. Information scrambling is intimately linked to the thermalization of isolated quantum many-body systems, and has been typically studied in a sudden quench scenario. Here, we extend the notion of quantum information scrambling to critical quantum many-body systems undergoing an adiabatic evolution.

View Article and Find Full Text PDF

Recent experiments in polariton chemistry indicate that reaction rates can be significantly enhanced or suppressed inside an optical cavity. One possible explanation for the rate modulation involves the cavity mode altering the intramolecular vibrational energy redistribution (IVR) pathways by coupling to specific molecular vibrations in the vibrational strong coupling (VSC) regime. However, the mechanism for such a cavity-mediated modulation of IVR is yet to be understood.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!