A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Pioglitazone ameliorates glomerular NLRP3 inflammasome activation in apolipoprotein E knockout mice with diabetes mellitus. | LitMetric

Pioglitazone ameliorates glomerular NLRP3 inflammasome activation in apolipoprotein E knockout mice with diabetes mellitus.

PLoS One

Department of cardiology, the affiliated hospital of Yangzhou University (Yangzhou NO.1 people's hospital), Yangzhou University, Yangzhou, Jiangsu, China.

Published: September 2017

Objective: The NLRP3 inflammasome plays an important role in the pathogenesis of inflammation in diabetic nephropathy (DN). Pioglitazone (PIO) has been found to exert an anti-inflammatory effect in patients with diabetes mellitus, but it is still unclear whether PIO exhibits a similar effect in DN. We aimed to explore the effect and underlying mechanism of PIO on DN, as well as investigate if NLRP3 is a pharmacologic target of PIO.

Methods: We divided 48 apolipoprotein E (apoE) (-/-) mice into 4 groups: apoE (-/-), apoE (-/-) with PIO, diabetic apoE (-/-), and diabetic apoE (-/-) with PIO. Wild type male C57BL/6 mice were used as controls (n = 8 per group). After 8 weeks of PIO treatment, we examined the baseline characteristics and metabolic parameters of each group, and we used enzyme-linked immunosorbent assay (ELISA), western blot, and immunohistochemical staining to evaluate the expression levels of advanced glycation end products (AGEs), receptor for advanced glycation end products (RAGE), NLRP3, nuclear factor-kappa B (NF-κB), caspase-1, interleukin (IL)-18, and IL-1β in each group.

Results: Compared to the diabetic apoE (-/-) group, PIO treatment decreased blood glucose, cholesterol, serum blood urea nitrogen (BUN), and creatinine levels. It also depressed the glomerular mesangial expansion. PIO down-regulated expression of AGEs, RAGE, and NF-κB, all of which further depressed NLRP3, caspase-1, IL-18, and IL-1β levels.

Conclusion: Pioglitazone can ameliorate diabetic renal damage, and this effect is related to the inhibition of renal AGE/RAGE axis activation and the down-regulation of NF-κB expression. These effects lead to a decline in NLRP3 levels and downstream secretion of inflammatory cytokines.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5510862PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0181248PLOS

Publication Analysis

Top Keywords

apoe -/-
24
diabetic apoe
12
nlrp3 inflammasome
8
diabetes mellitus
8
pio
8
-/- pio
8
pio treatment
8
advanced glycation
8
glycation products
8
il-18 il-1β
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!