For image-guided procedures, the imaging task is often tied to the registration of intraoperative and preoperative images to a common coordinate system. While the accuracy of this registration is a vital factor in system performance, there is a relatively little work that relates registration accuracy to image quality factors, such as dose, noise, and spatial resolution. To create a theoretical model for such a relationship, we present a Fisher information approach to analyze registration performance in explicit dependence on the underlying image quality factors of image noise, spatial resolution, and signal power spectrum. The model yields analysis of the Cramer-Rao lower bound (CRLB), in registration accuracy as a function of factors governing image quality. Experiments were performed in simulation of computed tomography low-contrast soft tissue images and high-contrast bone (head and neck) images to compare the measured accuracy [root mean squared error (RMSE) of the estimated transformations] with the theoretical lower bound. Analysis of the CRLB reveals that registration performance is closely related to the signal-to-noise ratio of the cross-correlation space. While the lower bound is optimistic, it exhibits consistent trends with experimental findings and yields a method for comparing the performance of various registration methods and similarity metrics. Further analysis validated a method for determining optimal post-processing (image filtering) for registration. Two figures of merit (CRLB and RMSE) are presented that unify models of image quality with registration performance, providing an important guide to optimizing intraoperative imaging with respect to the task of registration.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5696623PMC
http://dx.doi.org/10.1109/TMI.2017.2725644DOI Listing

Publication Analysis

Top Keywords

image quality
20
registration accuracy
12
registration performance
12
lower bound
12
registration
11
quality factors
8
noise spatial
8
spatial resolution
8
image
7
quality
5

Similar Publications

Smart Stimuli-responsive Nanogels: A Potential Tool for Targeted Drug Delivery.

Curr Pharm Des

January 2025

Department of Pharmaceutics, College of Pharmacy, Shaqra University, Shaqra 11961, Kingdom of Saudi Arabia.

Nanogels (NGs) are presently the focus of extensive research because of their special qualities, including minimal particle size, excellent encapsulating efficacy, and minimizing the breakdown of active compounds. As a result, NGs are great candidates for drug delivery systems. Cross-linked nanoparticles (NPs) called stimulus-responsive NGs are comprised of synthetic, natural, or a combination of natural and synthetic polymers.

View Article and Find Full Text PDF

Purpose Muscle atrophy progresses with age. The motor function may be estimated by measuring the muscle mass; however, if muscle quality deteriorates due to an increase in connective tissue within the muscle, a decline in motor function may be missed by measuring muscle mass alone. Therefore, it is important to understand the relationship between muscle mass, muscle quality, and motor function.

View Article and Find Full Text PDF

Ventricular tachycardia (VT) is a life-threatening arrhythmia often leading to sudden cardiac death, particularly in critically ill patients. Refractory VT, characterized by recurrent episodes requiring intervention, poses unique challenges for management, necessitating advanced diagnostic and therapeutic strategies. This systematic review evaluates the impact of imaging and pharmacological treatments in managing refractory VT in critically ill patients.

View Article and Find Full Text PDF

Physics-driven deep learning (PD-DL) methods have gained popularity for improved reconstruction of fast MRI scans. Though supervised learning has been used in early works, there has been a recent interest in unsupervised learning methods for training PD-DL. In this work, we take inspiration from statistical image processing and compressed sensing (CS), and propose a novel convex loss function as an alternative learning strategy.

View Article and Find Full Text PDF

Background: This video article describes the use of bone-anchored prostheses for patients with transtibial amputations, most often resulting from trauma, infection, or dysvascular disease. Large studies have shown that about half of all patients with a socket-suspended artificial limb experience limited mobility and limited prosthesis use because of socket-related problems. These problems occur at the socket-residual limb interface as a result of a painful and unstable connection, leading to an asymmetrical gait and subsequent pelvic and back pain.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!