The plant hormone ethylene plays various functions in plant growth, development and response to environmental stress. Ethylene is perceived by membrane-bound ethylene receptors, and among the homologous receptors in Arabidopsis, the ETR1 ethylene receptor plays a major role. The present study provides evidence demonstrating that Arabidopsis CPR5 functions as a novel ETR1 receptor-interacting protein in regulating ethylene response and signaling. Yeast split ubiquitin assays and bi-fluorescence complementation studies in plant cells indicated that CPR5 directly interacts with the ETR1 receptor. Genetic analyses indicated that mutant alleles of cpr5 can suppress ethylene insensitivity in both etr1-1 and etr1-2, but not in other dominant ethylene receptor mutants. Overexpression of Arabidopsis CPR5 either in transgenic Arabidopsis plants, or ectopically in tobacco, significantly enhanced ethylene sensitivity. These findings indicate that CPR5 plays a critical role in regulating ethylene signaling. CPR5 is localized to endomembrane structures and the nucleus, and is involved in various regulatory pathways, including pathogenesis, leaf senescence, and spontaneous cell death. This study provides evidence for a novel regulatory function played by CPR5 in the ethylene receptor signaling pathway in Arabidopsis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5680097 | PMC |
http://dx.doi.org/10.1111/jipb.12570 | DOI Listing |
Virus Evol
July 2024
Instituto de Biología Integrativa de Sistemas (CSIC-Universitat de València), Catedratico Agustin Escardino 9, Paterna, València 46182, Spain.
The outcome of a viral infection depends on a complex interplay between the host physiology and the virus, mediated through numerous protein-protein interactions. In a previous study, we used high-throughput yeast two-hybrid (HT-Y2H) to identify proteins in that bind to the proteins encoded by the turnip mosaic virus (TuMV) genome. Furthermore, after experimental evolution of TuMV lineages in plants with mutations in defense-related or proviral genes, most mutations observed in the evolved viruses affected the VPg cistron.
View Article and Find Full Text PDFPlant Sci
July 2023
Biomolecular Interaction Centre, School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand; School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW 2308, Australia; Research School of Biology, Australian National University, Canberra, ACT 2601, Australia. Electronic address:
The nuclear pore is structurally conserved across eukaryotes as are many of the pore's constituent proteins. The transmembrane nuclear pore proteins GP210 and NDC1 span the nuclear envelope holding the nuclear pore in place. Orthologues of GP210 and NDC1 in Arabidopsis were investigated through characterisation of T-DNA insertional mutants.
View Article and Find Full Text PDFJ Integr Plant Biol
July 2023
State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China.
Plant cells possess a two-layered immune system consisting of pattern-triggered immunity (PTI) and effector-triggered immunity (ETI), mediated by cell surface pattern-recognition receptors and intracellular nucleotide-binding leucine-rich repeat receptors (NLRs), respectively. The CONSTITUTIVE EXPRESSION OF PR GENES 5 (CPR5) nuclear pore complex protein negatively regulates ETI, including ETI-associated hypersensitive response. Here, we show that CPR5 is essential for the activation of various PTI responses in Arabidopsis, such as resistance to the non-adapted bacterium Pseudomonas syringae pv.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2023
Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Korea.
Plasticity of the root system architecture (RSA) is essential in enabling plants to cope with various environmental stresses and is mainly controlled by the phytohormone auxin. Lateral root development is a major determinant of RSA. Abiotic stresses reduce auxin signaling output, inhibiting lateral root development; however, how abiotic stress translates into a lower auxin signaling output is not fully understood.
View Article and Find Full Text PDFPlant Cell
April 2022
Assistant Features Editor, The Plant Cell, American Society of Plant Biologists, USA.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!