Comparison of σ-Hole and π-Hole Tetrel Bonds Formed by Pyrazine and 1,4-Dicyanobenzene: The Interplay between Anion-π and Tetrel Bonds.

Chemphyschem

Laboratory of Theoretical and Computational, Chemistry and School of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, China.

Published: September 2017

The σ-hole tetrel bond in pyrazine/1,4-dicyanobenzene⋅⋅⋅TH F (T=C and Si) and the π-hole tetrel bond in pyrazine/1,4-dicyanobenzene⋅⋅⋅F TO have been compared. The π-hole tetrel bond is stronger than the corresponding σ-hole tetrel bond, with a larger interaction energy, shorter binding contact, greater electron density, and bigger charge transfer. Pyrazine forms a more stable tetrel-bonded complex than 1,4-dicyanobenzene even though the nitrogen atom in the former has a smaller negative electrostatic potential than the latter. An interesting cooperative effect was found when anion-π and tetrel-bond interactions coexisted in the same multicomponent complex of X ⋅⋅⋅pyrazine/1,4-dicyanobenzene⋅⋅⋅TH F/F TO (X=F, Cl, and Br). Both interactions displayed a positive cooperative effect, as shown by the larger interaction energies, shorter binding separations, and greater electron densities. The enhancement in the tetrel bond is dependent on the strength of the anion-π interaction and it becomes larger in the order Br

Download full-text PDF

Source
http://dx.doi.org/10.1002/cphc.201700660DOI Listing

Publication Analysis

Top Keywords

tetrel bond
20
π-hole tetrel
12
tetrel bonds
8
σ-hole tetrel
8
larger interaction
8
shorter binding
8
greater electron
8
tetrel
7
bond
5
comparison σ-hole
4

Similar Publications

The viability of the P═Se bond to serve as a monitor of the strength of a noncovalent bond was tested in the context of the (CH)PSe molecule. Density functional theory (DFT) computations paired this base with a collection of Lewis acids that spanned hydrogen, halogen, chalcogen, pnicogen, and tetrel bonding interactions and covered a wide range of bond strengths. A very strong linear correlation was observed between the interaction energy and the nuclear magnetic resonance (NMR) J(PSe) coupling constant, which could serve as an accurate indicator of bond strength.

View Article and Find Full Text PDF

Nucleophilicities for a range of simple carbene molecules acting as hydrogen bond acceptors B in forming complexes B⋯HX are reported. The carbenes chosen to fulfil the roles of a Lewis base are B = RM, -(CH)M, HCCM and two N-heterocyclic carbenes, where M is one of the group 14 tetrel atoms, C, Si, Ge or Sn and R = H, CH, and F. All the carbenes but CH have a singlet electronic ground state.

View Article and Find Full Text PDF
Article Synopsis
  • * The study evaluated interaction energy through comparisons with spectroscopic data, geometric properties, and other factors to uncover correlations, particularly focusing on the C═O stretching frequency and nuclear magnetic resonance changes.
  • * While the interaction energy can be estimated from experimental measurements, standard AIM measurements correlate less effectively, and the σ-hole depth on the Lewis acid does not strongly relate to bond strength due to the limitations of electrostatic metrics.
View Article and Find Full Text PDF

Carbon-Bromide Bond Activation by Bidentate Halogen, Chalcogen, Pnicogen, and Tetrel Bonds.

J Phys Chem A

December 2024

College of Chemistry and Materials Science, Hebei Key Laboratory of Inorganic Nano-Materials, Hebei Normal University, Shijiazhuang 050024, China.

Halogen, chalcogen, pnictogen, and tetrel bonds in organocatalysis have gained noticeable attention. In this work, carbon-bromide bond activation in the Ritter reaction by bidentate imidazole-type halogen, chalcogen, pnicogen, and tetrel bond donors was studied by density functional theory. All of the above four kinds of catalysts exhibited excellent catalytic performance.

View Article and Find Full Text PDF

Two-Factor Rule for Distinguishing the Covalent and Tetrel Bonds.

Chempluschem

November 2024

Research Laboratory of Multiscale modelling of multicomponent materials, South Ural State University, 76, Lenin ave, Chelyabinsk, Russia, 454080.

Understanding and exploring the existence of a recognizable boundary between the noncovalent tetrel bond (TtB) and the coordination or weakened covalent bond are important for the bonding characterization. We have developed a simple methodology for analysing the type of bonds based on comparison of the electrostatic and total static potentials along the bond line. For the typical σ-hole noncovalent bond formed by a Tt atom in a tetrahedral molecule, we have found that the space gap between positions of the maxima of the total static potential and the negative quantity of electrostatic potential is much wider than that for the coordination bonds in a trigonal bipyramid molecular system for the Cl-Tt/Cl⋅⋅⋅Tt and N-Tt/N⋅⋅⋅Tt (Tt=C, Si, Ge) bonds in molecules and molecular complexes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!