Phase-filling singularities in the optical response function of highly doped (>10^{19} cm^{-3}) germanium are theoretically predicted and experimentally confirmed using spectroscopic ellipsometry. Contrary to direct-gap semiconductors, which display the well-known Burstein-Moss phenomenology upon doping, the critical point in the joint density of electronic states associated with the partially filled conduction band in n-Ge corresponds to the so-called E_{1} and E_{1}+Δ_{1} transitions, which are two-dimensional in character. As a result of this reduced dimensionality, there is no edge shift induced by Pauli blocking. Instead, one observes the "original" critical point (shifted only by band gap renormalization) and an additional feature associated with the level occupation discontinuity at the Fermi level. The experimental observation of this feature is made possible by the recent development of low-temperature, in situ doping techniques that allow the fabrication of highly doped films with exceptionally flat doping profiles.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.118.267402 | DOI Listing |
Nat Commun
December 2024
Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, Institute of Luminescent Materials and Information Displays, College of Materials Science and Engineering, Huaqiao University, Xiamen, Fujian, China.
Highly efficient perovskite solar cells (PSCs) in the n-i-p structure have demonstrated limited operational lifetimes, primarily due to the layer-to-layer ion diffusion in the perovskite/doped hole-transport layer (HTL) heterojunction, leading to conductivity drop in HTL and component loss in perovskite. Herein, we introduce an ultrathin (~7 nm) p-type polymeric interlayer (D18) with excellent ion-blocking ability between perovskite and HTL to address these issues. The ultrathin D18 interlayer effectively inhibits the layer-to-layer diffusion of lithium, methylammonium, formamidium, and iodide ions.
View Article and Find Full Text PDFEnviron Res
December 2024
Integrated Science and Technology Research Center, Faculty of Technology and Environment, Prince of Songkla University, Phuket Campus, Kathu, Phuket 83120 Thailand. Electronic address:
Nitrate is a crucial nutrient in the natural nitrogen cycle. However, human activities have elevated nitrate levels in aquatic ecosystems beyond natural thresholds, posing risks to human health and the environment. In this work, ZnCl-doped mesoporous silica nanoparticles (ZnCl@MSN) were synthesized using a one-pot preparation method, leading to a streamlined process with reduced time and energy consumption.
View Article and Find Full Text PDFSci Rep
December 2024
School of Physics and Materials Science, Shoolini University, Solan, H.P., India.
The industrial sector faces a significant challenge in finding the highly effective and efficient treatments for harmful dye-based color effluents. In this study, pure and cobalt doped barium hexaferrite of chemical formula, BaCoFeO (x = 0-0.06) are made via sol-gel auto-combustion (SC) methodology.
View Article and Find Full Text PDFNanomaterials (Basel)
December 2024
The Key Laboratory of Fuel Cell Technology of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China.
Developing highly active and durable non-noble metal catalysts is crucial for energy conversion and storage, especially for proton exchange membrane fuel cells (PEMFCs) and lithium-oxygen (Li-O) batteries. Non-noble metal catalysts are considered the greatest potential candidates to replace noble metal catalysts in PEMFCs and Li-O batteries. Herein, we propose a novel type of non-noble metal catalyst (Fe-Hf/N/C) doped with Hf into a mesoporous carbon material derived from Hf-ZIF-8 and co-doping with Fe and N, which greatly enhanced the activity and durability of the catalyst.
View Article and Find Full Text PDFNanomaterials (Basel)
December 2024
College of Science, Inner Mongolia University of Technology, Hohhot 010051, China.
Relaxor ferroelectric film capacitors exhibit high power density with ultra-fast charge and discharge rates, making them highly advantageous for consumer electronics and advanced pulse power supplies. The Aurivillius-phase bismuth layered ferroelectric films can effectively achieve a high breakdown electric field due to their unique insulating layer ((BiO) layer)). However, designing and fabricating Aurivillius-phase bismuth layer relaxor ferroelectric films with optimal energy storage characteristics is challenging due to their inherently stable ferroelectric properties.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!