Heavy metals can be serious pollutants of natural water bodies causing health risks to humans and aquatic organisms. The purpose of this study was to investigate the removal of five heavy metals from water by adsorption onto an iron industry blast furnace slag waste (point of zero charge (PZC) pH 6.0; main constituents, Ca and Fe) and a coal industry fly ash waste (PZC 3.0; main constituents, Si and Al). Batch study revealed that rising pH increased the adsorption of all metals with an abrupt increase at pH 4.0-7.0. The Langmuir adsorption maximum for fly ash at pH 6.5 was 3.4-5.1 mg/g with the adsorption capacity for the metals being in the order Pb > Cu > Cd, Zn, Cr. The corresponding values for furnace slag were 4.3 to 5.2 mg/g, and the order of adsorption capacities was Pb, Cu, Cd > Cr > Zn. Fixed-bed column study on furnace slag/sand mixture (1:1 w/w) revealed that the adsorption capacities were generally less in the mixed metal system (1.1-2.1 mg/g) than in the single metal system (3.4-3.5 mg/g). The data for both systems fitted well to the Thomas model, with the adsorption capacity being the highest for Pb and Cu in the single metal system and Pb and Cd in the mixed metal system. Our study showed that fly ash and blast furnace slag are effective low-cost adsorbents for the simultaneous removal of Pb, Cu, Cd, Cr and Zn from water.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11356-017-9610-4DOI Listing

Publication Analysis

Top Keywords

furnace slag
16
fly ash
16
metal system
16
heavy metals
12
blast furnace
12
removal heavy
8
metals water
8
main constituents
8
adsorption capacity
8
adsorption capacities
8

Similar Publications

The grouting technique is an efficient method for enhancing the stability of cracked slopes through the use of grouting materials. Conventional cement-based grouting materials are costly, energy-intensive, and environmentally damaging. Additionally, cement-hardening slurry is prone to cracks between the slurry and the rock.

View Article and Find Full Text PDF

An alternative approach to reducing the clinker factor, i.e., worldwide CO emissions resulting from the production of composite cement, is to replace these materials with supplementary aluminosilicate-based materials that promote the formation of alkali-activated cements, whose elevated temperature resistance, limited permeability, strong binding properties, excellent durability, high chemical corrosion resistance, confinement of toxic waste, and environmentally low impact have attracted a lot of attention in the cement industry.

View Article and Find Full Text PDF

Electric arc furnaces are commonly used in foamed slag technology for the production of steel from steel scrap through an electric process. The effects of using this technology include increased efficiency, reduced consumption of refractory materials, reduced energy consumption, reduced electrode wear, and improved arc stability. The world is constantly looking for solutions to optimize the feeding of the foaming agent to the electric furnace, including determining the moment of starting its feeding.

View Article and Find Full Text PDF

This study aims to systematically analyze the effects of different curing temperatures, unit binder content, and the mixture ratios of ground granulated blast-furnace slag and fly ash based on ordinary Portland cement in binders on the development of concrete compressive strength. Particularly, the study evaluates strength characteristics by calculating the maturity equivalent to 28 days of curing at 20 °C. A model based on the relationship between maturity and strength was applied to predict the compressive strength, and the experimental data were analyzed to derive strength coefficients for each variable.

View Article and Find Full Text PDF

Development and Characterization of Sustainable Cement-Free Controlled Low Strength Material Using Titanium Gypsum and Construction Waste Soil.

Materials (Basel)

November 2024

Huzhou Zhengtong Traffic Engineering Testing and Inspection Co., Ltd., Huzhou 313000, China.

This study investigates the utilization of titanium gypsum (TG) and construction waste soil (CWS) for the development of sustainable, cement-free Controlled Low Strength Material (CLSM). TG, combined with ground granulated blast furnace slag, fly ash, and quicklime, serves as the binder, while CWS replaces natural sand. Testing thirteen mixtures revealed that a CWS replacement rate of over 40% controls bleeding below 5%, with a water-to-solid ratio between 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!