Vector-borne trypanosomatid parasite infections in tropical and sub-tropical countries constitute a major threat to humans and livestock. parasites are transmitted by tsetse fly and lead to African sleeping sickness in humans and Nagana in cattle. In Latin American countries, infections spread by triatomine kissing bugs lead to Chagas disease. Various species of transmitted to humans by phlebotomine sandflies manifest in a spectrum of diseases termed Leishmaniasis. 20 million people are currently infected with trypanosomatid parasites, leading to over 30,000 deaths annually and half billion people at risk of the infection. It is estimated that 300,000 Chagas infected people reside in the United States and 100,000 in Europe. Glycosomes are peroxisome-like organelles found only in trypanosomatids. Glycolysis occurs in the cytosol in all other organisms, but glycolytic enzymes and other metabolic pathways are compartmentalized inside glycosomes in trypanosomatids. Glycosomes are essential for the parasite survival and hence thought to be an attractive drug target. Our recent study [Dawidowski Science (2017)] is the first to report small molecule inhibitors of glycosomal protein import. Using structure-based drug design, we developed small molecule inhibitors of the PEX5-PEX14 protein-protein interaction that disrupt glycosomal protein import and kill the parasites. Oral treatment of infected mice with PEX14 inhibitor significantly reduced the parasite levels with no adverse effect on mice. The study provides the grounds for further development of the glycosome inhibitors into clinical candidates and validates the parasite protein-protein interactions as drug targets.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5507685 | PMC |
http://dx.doi.org/10.15698/mic2017.07.581 | DOI Listing |
Biomolecules
November 2024
Department of Pediatrics, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15224, USA.
Lysine succinylation, and its reversal by sirtuin-5 (SIRT5), is known to modulate mitochondrial fatty acid β-oxidation (FAO). We recently showed that feeding mice dodecanedioic acid, a 12-carbon dicarboxylic acid (DC) that can be chain-shortened four rounds to succinyl-CoA, drives high-level protein hypersuccinylation in the peroxisome, particularly on peroxisomal FAO enzymes. However, the ability of SIRT5 to reverse DC-induced peroxisomal succinylation, or to regulate peroxisomal FAO in this context, remained unexplored.
View Article and Find Full Text PDFExp Parasitol
December 2024
Laboratorio de Enzimología de Parásitos, Departamento de Biología, Facultad de Ciencias, Universidad de Los Andes, Mérida, Venezuela. Electronic address:
In Leishmania, the nucleotide-sugar UDP-galactose can be synthesized by a salvage pathway, the Isselbacher route, involving phosphorylation of galactose and the action of UDP-sugar pyrophosphorylase. The first enzyme of the pathway, galactokinase, has yet to be studied in this parasite. Here, we report a molecular and biochemical characterization of this enzyme in Leishmania mexicana.
View Article and Find Full Text PDFPlant Cell
December 2024
State Key Laboratory of Rice Biology and Breeding, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China.
Salicylic acid (SA) is a prominent defense hormone whose basal level, organ-specific accumulation, and physiological role vary widely among plant species. Of the 2 known pathways of plant SA biosynthesis, the phenylalanine ammonia lyase (PAL) pathway is more ancient and universal but its biosynthetic and physiological roles in diverse plant species remain unclear. Studies in which the PAL pathway is specifically or completely inhibited, as well as a direct comparison of diverse species and different organs within the same species, are needed.
View Article and Find Full Text PDFPLoS One
December 2024
Institute of Anatomy and Cell Biology, Justus-Liebig-University, Giessen, Germany.
Human peroxisomal biogenesis disorders of the Zellweger syndrome spectrum affect skeletal development and induce tooth malformations. Whereas several peroxisomal knockout mouse studies elucidated the pathogenesis of skeletal defects, little information is available on how dental pathologies arise in peroxisomal biogenesis disorder patients. To understand the impact of severe peroxisomal dysfunction on early odontogenesis, here we performed morphometric studies on developing molars of new-born Pex11b knockout mice.
View Article and Find Full Text PDFElife
November 2024
Department of Cell and Developmental Biology, Biocenter, University of Würzburg, Würzburg, Germany.
The actin cytoskeleton is a ubiquitous feature of eukaryotic cells, yet its complexity varies across different taxa. In the parasitic protist , a rudimentary actomyosin system consisting of one actin gene and two myosin genes has been retained despite significant investment in the microtubule cytoskeleton. The functions of this highly simplified actomyosin system remain unclear, but appear to centre on the endomembrane system.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!