The particle-swarm optimization method has been used to predict the stable high pressure structures up to 300 GPa of hydrogen-rich group 17 chlorine (H Cl, = 2-7) compounds. In comparison to the group 1 and 2 hydrides, the structural modification associated with increasing pressure and hydrogen concentration is much less dramatic. The polymeric HCl chains already present in the low temperature phase under ambient pressure persist in all the high pressure structures. No transfer of electrons from the chlorine atoms into the interstitial sites is found. This indicates the chemical bonding at high pressure in group 17 elements is fundamentally different from the alkali and alkaline elements. It is found that almost perfectly triangular H ions can be stabilized in the crystalline structure of HCl.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5491956 | PMC |
http://dx.doi.org/10.1039/c4sc02802c | DOI Listing |
Ann Biomed Eng
January 2025
Department of Mechanical and Industrial Engineering, Northeastern University, 360 Huntington Avenue, Boston, MA, 02115, USA.
Purpose: To evaluate the population variation in head-to-helmet contact forces in helmet users.
Methods: Four different size Kevlar composite helmets were instrumented with contact pressure sensors and chinstrap tension meters. A total number of 89 volunteers (25 female and 64 male volunteers) participated in the study.
Purpose: To evaluate the effect of osilodrostat and hypercortisolism control on blood pressure (BP) and glycemic control in patients with Cushing's disease.
Methods: Pooled analysis of two Phase III osilodrostat studies (LINC 3 and LINC 4), both comprising a 48-week core phase and an optional open-label extension. Changes from baseline in systolic and diastolic BP (SBP and DBP), fasting plasma glucose (FPG), and glycated hemoglobin (HbA) were evaluated during osilodrostat treatment in patients with/without hypertension or diabetes at baseline.
Nat Commun
January 2025
Center for Advanced Radiation Sources, University of Chicago, Chicago, IL, USA.
Phase transitions in the mantle control its internal dynamics and structure. The post-spinel transition marks the upper-lower mantle boundary, where ringwoodite dissociates into bridgmanite plus ferropericlase, and its Clapeyron slope regulates mantle flow across it. This interaction has previously been assumed to have no lateral spatial variations, based on the assumption of a linear post-spinel boundary in pressure and temperature.
View Article and Find Full Text PDFNat Commun
January 2025
Center for High Pressure Science, State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao, 066004, China.
Hydrous aluminosilicates are important deep water-carriers in sediments subducting into the deep mantle. To date, it remains enigmatic how hydrous aluminosilicates withstand extremely high temperatures in the mantle transition zone. Here we systematically investigate the crystal structures and chemical compositions of typical hydrous aluminosilicates using single-crystal X-ray diffraction, electron probe microanalyzer, and nanoscale secondary ion mass spectrometry.
View Article and Find Full Text PDFChin Med J (Engl)
January 2025
Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China.
Background: Approximately 40% of individuals with diabetes worldwide are at risk of developing diabetic kidney disease (DKD), which is not only the leading cause of kidney failure, but also significantly increases the risk of cardiovascular disease, causing significant societal health and financial burdens. This study aimed to describe the burden of DKD and explore its cross-country epidemiological status, predict development trends, and assess its risk factors and sociodemographic transitions.
Methods: Based on the Global Burden of Diseases (GBD) Study 2021, data on DKD due to type 1 diabetes (DKD-T1DM) and type 2 diabetes (DKD-T2DM) were analyzed by sex, age, year, and location.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!