Sphingolipids, found in membranes of eukaryotic cells, have been demonstrated to carry out functions in various processes in plant cells. However, the roles of these lipids in fruit abscission remain to be determined in plants. Biochemical and fluorescence microscopy imaging approach has been adopted to investigate the accumulation and distribution of sphingolipids during mature-fruit abscission in olive ( L. cv. Picual). Here, a lipid-content analysis in live protoplasts of the olive abscission zone (AZ) was made with fluorescent dyes and lipid analogs, particularly plasma membrane sphingolipid-enriched domains, and their dynamics were investigated in relation to the timing of mature-fruit abscission. In olive AZ cells, the measured proportion of both polar lipids and sphingolipids increased as well as endocytosis was stimulated during mature-fruit abscission. Likewise, mature-fruit abscission resulted in quantitative and qualitative changes in sphingolipid long-chain bases (LCBs) in the olive AZ. The total LCB increase was due essentially to the increase of t18:1(8) LCBs, suggesting that C-4 hydroxylation and Δ8 desaturation with a preference for ()-isomer formation were quantitatively the most important sphingolipids in olive AZ during abscission. However, our results also showed a specific association between the dihydroxylated LCB sphinganine (d18:0) and the mature-fruit abscission. These results indicate a clear correlation between the sphingolipid composition and mature-fruit abscission. Moreover, measurements of endogenous sterol levels in the olive AZ revealed that it accumulated sitosterol and campesterol with a concomitant decrease in cycloartenol during abscission. In addition, underlying the distinct sterol composition of AZ during abscission, genes for key biosynthetic enzymes for sterol synthesis, for obtusifoliol 14α-demethylase (CYP51) and C-24 sterol methyltransferase2 (SMT2), were up-regulated during mature-fruit abscission, in parallel to the increase in sitosterol content. The differences found in AZ lipid content and the relationships established between LCB and sterol composition, offer new insights about sphingolipids and sterols in abscission.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5489598 | PMC |
http://dx.doi.org/10.3389/fpls.2017.01138 | DOI Listing |
Front Plant Sci
April 2024
State Key Laboratory of Resource Insects, Southwest University, Chongqing, China.
Plant glycoside hydrolase family 9 genes (GH9s) are widely distributed in plants and involved in a variety of cellular and physiological processes. In the current study, nine GH9 genes were identified in the mulberry and were divided into two subfamilies based on the phylogenetic analysis. Conserved motifs and gene structure analysis suggested that the evolution of the two subfamilies is relatively conserved and the glycoside hydrolase domain almost occupy the entire coding region of the GH9s gene.
View Article and Find Full Text PDFJ Econ Entomol
August 2021
Department of Entomology and Nematology, University of California, Davis, CA 95616, USA.
In establishing Integrated Pest Management (IPM) plans for understudied pests, it is crucial to understand the nature of their herbivory and resulting damage. European earwig (Forficula auricularia L.; Dermaptera: Forficulidae) densities are increasing in citrus orchards in Central California.
View Article and Find Full Text PDFFront Plant Sci
June 2017
Department of Plant Physiology, University of ExtremaduraBadajoz, Spain.
Sphingolipids, found in membranes of eukaryotic cells, have been demonstrated to carry out functions in various processes in plant cells. However, the roles of these lipids in fruit abscission remain to be determined in plants. Biochemical and fluorescence microscopy imaging approach has been adopted to investigate the accumulation and distribution of sphingolipids during mature-fruit abscission in olive ( L.
View Article and Find Full Text PDFMol Genet Genomics
October 2015
Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences Guangzhou, Guangdong, 510640, People's Republic of China.
On-tree storage and harvesting of mature fruit account for a large proportion of cost in the production of citrus, and a reduction of the cost would not be achieved without a thorough understanding of the mechani sm of the mature fruit abscission. Genome-wide gene expression changes in ethylene-treated fruit calyx abscission zone (AZ-C) of Citrus sinensis cv. Olinda were therefore investigated using a citrus genome array representing up to 33,879 citrus transcripts.
View Article and Find Full Text PDFPLoS One
September 2013
Department of Plant Physiology, University of Extremadura, Avda de Elvas s/n, Badajoz, Spain.
Background: Mature-fruit abscission (MFA) in fleshy-fruit is a genetically controlled process with mechanisms that, contrary to immature-fruit abscission, has not been fully characterized. Here, we use pyrosequencing to characterize the transcriptomes of melon abscission zone (AZ) at three stages during AZ-cell separation in order to understand MFA control at an early stage of AZ-activation.
Principal Findings: The results show that by early induction of MFA, the melon AZ exhibits major gene induction, while by late induction of MFA, melon AZ shows major gene repression.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!