Natural antibodies play crucial roles in pathogen elimination, B-cell survival and homeostasis, and inflammatory and autoimmune diseases. Although estrogens are able to regulate both innate and adaptive immune responses, their role in the production of natural antibodies is unknown. Here, we show that the dietary intake of the synthetic estradiol analog, 17α-ethinylestradiol (EE), one of the most potent pharmaceutical estrogens and intensively used in human therapeutics as a component of most oral contraceptives, regulates the abundance and proliferation of T and IgM B lymphocytes in the teleost fish gilthead seabream ( L.). Furthermore, for the first time in vertebrates, it is shown that estrogen signaling through G protein-coupled estrogen receptor 1 (GPER1) induces the production of polyreactive natural antibodies, which are able to crossreact with unrelated antigens and commensal and pathogenic bacteria. In addition, the serum from fish treated with EE or the GPER1 agonist G1 shows higher complement-dependent bactericidal activity than that from non-treated specimens. These results demonstrate that estrogens and GPER1 are the key regulators of natural antibody production and pathogen clearance in fish, paving the way for future studies in other vertebrate classes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5489559PMC
http://dx.doi.org/10.3389/fimmu.2017.00736DOI Listing

Publication Analysis

Top Keywords

natural antibodies
12
production natural
8
protein-coupled estrogen
8
estrogen receptor
8
natural
5
estrogens
4
estrogens promote
4
production
4
promote production
4
natural neutralizing
4

Similar Publications

This study aimed to create a new recombinant virus by modifying the EV-A71 capsid protein, serving as a useful tool and model for studying human Enteroviruses. We developed a new screening method using EV-A71 pseudovirus particles to systematically identify suitable insertion sites and tag types in the VP1 capsid protein. The pseudovirus's infectivity and replication can be assessed by measuring postinfection luciferase signals.

View Article and Find Full Text PDF

Japanese encephalitis (JE) is a zoonotic disease caused by the Japanese encephalitis virus (JEV), belonging to the family. Diagnosis of Japanese encephalitis (JE) based on clinical signs alone is challenging due to the high proportion of subclinical cases. The Plaque Reduction Neutralization Test (PRNT) is considered the gold standard for detecting JE-specific antibodies because of its high specificity.

View Article and Find Full Text PDF

Selected Mechanisms of Action of Bacteriophages in Bacterial Infections in Animals.

Viruses

January 2025

Department of Veterinary Prevention and Avian Diseases, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, 20-033 Lublin, Poland.

Bacteriophages, as ubiquitous bacterial viruses in various natural ecosystems, play an important role in maintaining the homeostasis of the natural microbiota. For many years, bacteriophages were not believed to act on eukaryotic cells; however, recent studies have confirmed their ability to affect eukaryotic cells and interact with the host immune system. Due to their complex protein structure, phages can also directly or indirectly modulate immune processes, including innate immunity, by modulating phagocytosis and cytokine reactions, as well as acquired immunity, by producing antibodies and activating effector cells.

View Article and Find Full Text PDF

Development of a Luciferase Immunosorbent Assay for Detecting Crimean-Congo Hemorrhagic Fever Virus IgG Antibodies Based on Nucleoprotein.

Viruses

December 2024

Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China.

Crimean-Congo hemorrhagic fever (CCHF) is a serious tick-borne disease with a wide geographical distribution. Classified as a level 4 biosecurity risk pathogen, CCHF can be transmitted cross-species due to its aerosol infectivity and ability to cause severe hemorrhagic fever outbreaks with high morbidity and mortality. However, current methods for detecting anti-CCHFV antibodies are limited.

View Article and Find Full Text PDF

Targeting Brain Drug Delivery with Macromolecules Through Receptor-Mediated Transcytosis.

Pharmaceutics

January 2025

Key Laboratory of Molecular Biophysics, Institute of Biophysics, School of Health Sciences & Biomedical Engineering, Hebei University of Technology, Tianjin 300401, China.

Brain diseases pose significant treatment challenges due to the restrictive nature of the blood-brain barrier (BBB). Recent advances in targeting macromolecules offer promising avenues for overcoming these obstacles through receptor-mediated transcytosis (RMT). We summarize the current progress in targeting brain drug delivery with macromolecules for brain diseases.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!