All-optical photonic devices are crucial for many important photonic technologies and applications, ranging from optical communication to quantum information processing. Conventional design of all-optical devices is based on photon propagation and interference in real space, which may rely on large numbers of optical elements, and the requirement of precise control makes this approach challenging. Here we propose an unconventional route for engineering all-optical devices using the photon's internal degrees of freedom, which form photonic crystals in such synthetic dimensions for photon propagation and interference. We demonstrate this design concept by showing how important optical devices such as quantum memory and optical filters can be realized using synthetic orbital angular momentum (OAM) lattices in degenerate cavities. The design route utilizing synthetic photonic lattices may significantly reduce the requirement for numerous optical elements and their fine tuning in conventional design, paving the way for realistic all-optical photonic devices with novel functionalities.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5519981 | PMC |
http://dx.doi.org/10.1038/ncomms16097 | DOI Listing |
Nat Commun
January 2025
Zhejiang Lab, Hangzhou, Zhejiang, 311121, China.
Micromachines (Basel)
January 2025
Key Laboratory of Instrumentation Science and Dynamic Measurement Ministry of Education, North University of China, Taiyuan 030051, China.
A Hz level narrow linewidth all-optical microwave oscillator based on the torsional radial acoustic modes (TR) of a single-mode fiber (SMF) is proposed and validated. The all-optical microwave oscillator consists of a 20 km SMF main ring cavity and a 5 km SMF sub ring cavity. The main ring cavity provides forward stimulated Brillouin scattering gain and utilizes a nonlinear polarization rotation effect to achieve TR mode locking.
View Article and Find Full Text PDFNanomaterials (Basel)
January 2025
Key Laboratory of All Optical Network and Advanced Telecommunication Network, Ministry of Education, Institute of Lightwave Technology, Beijing Jiaotong University, Beijing 100044, China.
Diffractive optical elements (DOEs) are specialized optical components that manipulate light through diffraction for various applications, including holography, spectroscopy, augmented reality (AR) and virtual reality (VR), and light detection and ranging (LiDAR). The performance of DOEs is highly determined by fabricated materials and fabrication methods, in addition to the numerical simulation design. This paper presents a microfabrication technique optimized for DOEs, enabling precise control of critical parameters, such as refractive index (RI) and thickness.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, P. R. China.
In this manuscript, an all-optical modulation photodetector based on a CdS/graphene/Ge sandwich structure is designed. In the presence of the modulation (near-infrared) light, the Fermi level of the graphene channel shifts, allowing for the tuning of the visible light response speed as well as achieving a broad responsivity range from negative (-3376 A/W) to positive (3584 A/W) response. Based on this, logical operations are performed by adjusting the power of the modulation light superimposed with the signal light.
View Article and Find Full Text PDFACS Omega
January 2025
Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos, SP 13560-970, Brasil.
Direct laser writing (DLW) has been recognized as a unique technique for three-dimensional (3D) prototyping with resolution beyond the diffraction limit. One trend in DLW technologies is the use of polymers, given their favorable mechanical properties and optical quality, rendering them promising for the next generation of nonlinear photonic devices. However, absorptive properties that facilitate DLW processes may also hinder the performance of polymers as all-optical devices.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!