Masugi nephritis was induced in Sprague-Dawley rats by an intravenous injection of rabbit anti-rat kidney serum. In the autologous phase of the disease, three of 18 rats manifested continuous hematuria. Ultrastructural examination of renal glomeruli by transmission and scanning microscopy revealed gaps in the basement membranes, and the transcapillary passage of red blood cells through the discontinuous regions in the hematuric rats. Control animals revealed no gaps in the glomerular basement membranes regardless of the method used in their preparation for electron microscopy. These data support the hypothesis that hematuria is a result of the passage of red blood cells through gaps in the glomerular basement membrane in Masugi nephritis.
Download full-text PDF |
Source |
---|
Heliyon
December 2024
Department of Medicine, Faculty of Medicine and Health Sciences, and Institute of Neurosciences, University of Barcelona, Barcelona, Spain.
In early-stage Alzheimer's disease (AD) amyloid-β (Aβ) deposition can induce neuronal hyperactivity, thereby potentially triggering activity-dependent neuronal secretion of phosphorylated tau (p-tau), ensuing tau aggregation and spread. Therefore, cortical excitability is a candidate biomarker for early AD detection. Moreover, lowering neuronal excitability could potentially complement strategies to reduce Aβ and tau buildup.
View Article and Find Full Text PDFNeurobiol Aging
December 2024
Vanderbilt Memory and Alzheimer's Center, Vanderbilt University Medical Center, Nashville, TN, USA; Pharmacology Department, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA; Epidemiology Doctoral Program, School of Medicine, Vanderbilt University, Nashville, TN, USA; Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA. Electronic address:
We have identified FLT1 as a protein that changes during Alzheimer's disease (AD) whereby higher brain protein levels are associated with more amyloid, more tau, and faster longitudinal cognitive decline. Given FLT1's role in angiogenesis and immune activation, we hypothesized that FLT1 is upregulated in response to amyloid pathology, driving a vascular-immune cascade resulting in neurodegeneration and cognitive decline. We sought to determine (1) if in vivo FLT1 levels (CSF and plasma) associate with biomarkers of AD neuropathology or differ between diagnostic staging in an aged cohort enriched for early disease, and (2) whether FLT1 expression interacts with amyloid on downstream outcomes, such as phosphorylated tau levels and cognitive performance.
View Article and Find Full Text PDFJ Phys Chem B
January 2025
Department of Physics, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan.
Multiple far-red light-adapted photosystem I (FR-PSI) reaction centers are recently found to work in oxygenic photosynthesis. They contain a small amount of a new type pigment chlorophyll (Chl ) in addition to the major pigment chlorophyll (Chl ). FR-PSI differs from the conventional PSIs in plants and cyanobacteria, which use only visible light absorbed by Chl , although the mechanism of FR-PSI is not fully clear yet.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Richard and Loan Hill Department of Biomedical Engineering, University of Illinois, Chicago, IL 60612.
Brain Commun
December 2024
Oslo Center for Clinical Heart Research, Department of Cardiology Ullevaal, Oslo University Hospital, Oslo 0424, Norway.
Delirium is a neuropsychiatric syndrome commonly presenting during acute illness. The pathophysiology of delirium is unknown, but neuroinflammation is suggested to play a role. In this cross-sectional study, we aimed to investigate whether cell-free DNA and markers of neutrophil extracellular traps in serum and CSF were associated with delirium and neuronal damage, assessed by neurofilament light chain.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!