The objective of this study was to synthesize and characterize citric acid crosslinked carboxymethyl tamarind gum (CMTG) hydrogels films. The hydrogel films were characterized by Attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy, solid state C-nuclear magnetic resonance (C NMR) spectroscopy and differential scanning calorimeter (DSC). The prepared hydrogel films were evaluated for the carboxyl content and swelling ratio. The model drug moxifloxacin hydrochloride was loaded into hydrogels films and drug release was studied at pH 7.4. The hemolysis assay was used to study the biocompatibility of hydrogel films. The results of ATR-FTIR, solid state C NMR and DSC confirmed the formation of ester crosslinks between citric acid and CMTG. The total carboxyl content of hydrogel film was found to be decreased when amount of CMTG was increased. The swelling of hydrogel film was found to be decreased with increase in curing temperature and time. CMTG hydrogel films showed high drug loading with non-Fickian release mechanism suggesting controlled release of drug. The hydrogel films were found to be biocompatible. It can be concluded that the citric acid can be used for the preparation of CMTG hydrogel films. Further, CMTG hydrogel film can be used potentially for controlled release of drug.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijbiomac.2017.07.058 | DOI Listing |
Int J Biol Macromol
January 2025
State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, PR China. Electronic address:
Multidirectional strain sensors are of technological importance for wearable devices and soft robots. Here, we report that flexible materials capable of multidirectional anisotropic strain sensing can be constructed leveraging diffusion-induced infiltration of monomers and in situ polymerization of metal ion-containing double network hydrogels in and on the surface of micro-corrugated chiral nematic cellulose nanocrystal/glucose films. Integrating the micro-corrugated cellulose nanocrystal/glucose chiral nematic films with ionic conductive hydrogels of PAA-co-AAm/sodium alginate/Al endows the materials with multidirectional mechanoelectrical resistivity and mechanochromism anisotropy.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Botany and Microbiology Department, Faculty of Science, Tanta University, Tanta 31527, Egypt. Electronic address:
In recent decades, there has been a growing interest in the use of polysaccharides that exhibit biological activity for a wide range of innovative applications. This is due to their nontoxicity, biodegradability, biocompatibility, and therapeutic properties. The diverse properties of polysaccharides derived from marine algae make them a promising strategy for the construction of drug delivery systems (DDSs).
View Article and Find Full Text PDFA new fusidic acid-loaded hydrogel film was prepared via the solvent casting technique using alginate and Aloe vera. The hydrogel films were optimized using different ratios of sodium alginate, Aloe vera, and glycerin. The films containing 10% glycerin (w/w of alginate) exhibited the best appearance.
View Article and Find Full Text PDFJ Biomater Sci Polym Ed
January 2025
Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, India.
Zein, a plant-based protein obtained from the endosperm of corn ( L.) received colossal attention in recent years due to its promising features like being economical, mucoadhesive, gastro-resistant, biocompatible and aids to load hydrophilic and hydrophobic therapeutic agents. It can be employed for the fabrication of various drug delivery systems such as nanoparticles, micelles, hydrogels, nanofibers and films.
View Article and Find Full Text PDFAdv Sci (Weinh)
December 2024
MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, Zhejiang, 310058, China.
Corneal blindness is a significant reason for visual impairment globally. Researchers have been investigating several methods for corneal regeneration in order to cure these patients. Biomaterials are favored due to their biocompatibility and capacity to promote cell adhesion.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!