Background And Objectives: The mutation of the gap junction protein beta 2 () gene is the predominant cause of autosomal recessive non-syndromic hearing loss. The purpose of this study was to evaluate the speech perception outcome after cochlear implantation according to the presence of a mutation.

Subjects And Methods: During the period from March 2004 to February 2005, 38 patients underwent cochlear implantation at Asan Medical Center. Genetic factors and speech perception were evaluated in all subjects, and the patients were grouped according to the presence of a mutation. The two groups were carefully matched according to the age at cochlear implantation. We analyzed four mutations in the gene: 35delG, 167delT, 235delC, and E114G. Speech perception outcomes were measured using the open set, 1 and 2 syllables, the comprehension test, the Meaningful Auditory Integration Scale, the categories of auditory performance, and the Speech Intelligibility Rating scores. The evaluations were performed before the operation, 6 and 12 months thereafter, and then annually up to nine years after cochlear implantation.

Results: Fifteen patients had bi-allelic mutations (11 with E114G and 4 with 235delC), whereas the remaining 23 had wild type alleles. For the age-matched analysis, 14 patients were selected and divided into two groups of 7 subjects each: mutation and no mutation (i.e., deafness of unknown origin). Overall, all patients showed improvement of speech perception outcome after cochlear implantation. There was no difference in the improvement between patients with and without mutations at the 5-year and 9-year follow up. The pattern of improvement throughout the duration of the follow-up also showed no difference between the two groups.

Conclusions: Similar outcomes of speech perception are expected after cochlear implantation in pediatric patients with or without mutation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5516703PMC
http://dx.doi.org/10.7874/jao.2017.21.2.95DOI Listing

Publication Analysis

Top Keywords

speech perception
24
cochlear implantation
24
perception outcomes
8
gap junction
8
junction protein
8
protein beta
8
hearing loss
8
perception outcome
8
outcome cochlear
8
speech
7

Similar Publications

Comprehension of acoustically degraded emotional prosody in Alzheimer's disease and primary progressive aphasia.

Sci Rep

December 2024

Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, 1st Floor, 8-11 Queen Square, London, WC1N 3AR, UK.

Previous research suggests that emotional prosody perception is impaired in neurodegenerative diseases like Alzheimer's disease (AD) and primary progressive aphasia (PPA). However, no previous research has investigated emotional prosody perception in these diseases under non-ideal listening conditions. We recruited 18 patients with AD, and 31 with PPA (nine logopenic (lvPPA); 11 nonfluent/agrammatic (nfvPPA) and 11 semantic (svPPA)), together with 24 healthy age-matched individuals.

View Article and Find Full Text PDF

Background: Theories highlight the important role of chronic stress in remodeling HPA-axis responsivity under stress. The Perceived Stress Scale (PSS) is one of the most widely used measures of enduring stress perceptions, and no previous studies have evaluated whether greater perceptions of stress on the PSS are associated with cortisol hypo- or hyperactivity responses to the Trier Social Stress Test (TSST).

Objective: To examine if high perceived stress over the past month, as measured by the PSS, alters cortisol and subjective acute stress reactivity to the TSST in healthy young adults.

View Article and Find Full Text PDF

Multi-talker speech intelligibility requires successful separation of the target speech from background speech. Successful speech segregation relies on bottom-up neural coding fidelity of sensory information and top-down effortful listening. Here, we studied the interaction between temporal processing measured using Envelope Following Responses (EFRs) to amplitude modulated tones, and pupil-indexed listening effort, as it related to performance on the Quick Speech-in-Noise (QuickSIN) test in normal-hearing adults.

View Article and Find Full Text PDF

How Does Deep Neural Network-Based Noise Reduction in Hearing Aids Impact Cochlear Implant Candidacy?

Audiol Res

December 2024

Division of Audiology, Department of Otolaryngology-Head and Neck Surgery, Mayo Clinic, Rochester, MN 55902, USA.

Background/objectives: Adult hearing-impaired patients qualifying for cochlear implants typically exhibit less than 60% sentence recognition under the best hearing aid conditions, either in quiet or noisy environments, with speech and noise presented through a single speaker. This study examines the influence of deep neural network-based (DNN-based) noise reduction on cochlear implant evaluation.

Methods: Speech perception was assessed using AzBio sentences in both quiet and noisy conditions (multi-talker babble) at 5 and 10 dB signal-to-noise ratios (SNRs) through one loudspeaker.

View Article and Find Full Text PDF

Background/objectives: Understanding speech in background noise is a challenging task for listeners with normal hearing and even more so for individuals with hearing impairments. The primary objective of this study was to develop Romanian speech material in noise to assess speech perception in diverse auditory populations, including individuals with normal hearing and those with various types of hearing loss. The goal was to create a versatile tool that can be used in different configurations and expanded for future studies examining auditory performance across various populations and rehabilitation methods.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!