Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
'Core stability' is considered essential in rehabilitation and prevention. Particularly with respect to hamstring injury prevention, assessment and training of lumbo-pelvic control is thought to be key. However, supporting scientific evidence is lacking. To explore the importance of proximal neuromuscular function with regard to hamstring injury susceptibility, this study investigated the association between the Prone Hip Extension (PHE) muscle activation pattern and hamstring injury incidence in amateur soccer players. 60 healthy male soccer players underwent a comprehensive clinical examination, comprising a range of motion assessments and the investigation of the posterior chain muscle activation pattern during PHE. Subsequently, hamstring injury incidence was recorded prospectively throughout a 1.5-season monitoring period. Players who were injured presented a PHE activation pattern that differed significantly from those who did not. Contrary to the controls, hamstring activity onset was significantly delayed (p=0.018), resulting in a shifted activation sequence. Players were 8 times more likely to get injured if the hamstring muscles were activated after the lumbar erector spinae instead of vice versa (p=0.009). Assessment of muscle recruitment during PHE demonstrated to be useful in injury prediction, suggesting that neuromuscular coordination in the posterior chain influences hamstring injury vulnerability.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1055/s-0043-103016 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!