Considerable attention has been paid to the occurrence and abundance of antibiotic resistance genes (ARGs) in aquatic environments. However, the temporal variation and dissemination of ARGs in aquaculture environments and reared organisms need further study. This study investigated the abundance and diversity of ARGs and bacterial community in water source, shrimp pond water, sediment, and shrimps during the rearing period in Pearl River Delta region, South China. The results showed that sul1, qnrD, cmlA, and floR were the predominant ARGs in the aquaculture samples. A trend of decreasing abundance of ARGs was observed for pond water samples during the rearing period, whereas an increasing trend was observed in the sediment and shrimp samples. The total concentration of ARGs in water source was significantly higher than that in shrimp pond water (p<0.05). A significant negative correlation was found between the total concentrations of ARGs in pond waters and sediments (p<0.01). The total abundances of ARGs in intestinal tract of adult shrimps were 4.48-19.0 times higher than those in juvenile shrimps. Similar to water source and pond water, cmlA and sul1 were the predominant ARGs in shrimp intestinal tract. The bacterial community in the shrimp intestinal tract changed greatly from juvenile to adult. The results of the present study indicated that the abundances of ARGs in aquaculture varied temporally during the rearing period. Water source was an important medium disseminating ARGs to the aquaculture environments and reared organisms. Sul1 could be used as a potential indicator for ARGs in both water and sediment in aquaculture in the estuary of the Pearl River Delta, South China. This study represents a case study for the temporal variation of abundance and dissemination of ARGs in aquaculture and is a reference for potential risks to food safety and human health.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2017.07.040 | DOI Listing |
Environ Microbiol Rep
February 2025
Department of Biology, University of Regina, Regina, Saskatchewan, Canada.
Prairie wetland ponds on the Great Plains of North America offer a diverse array of geochemical scenarios that can be informative about their impact on microbial communities. These ecosystems offer invaluable ecological services while experiencing significant stressors, primarily through drainage and climate change. In this first study systematically combining environmental conditions with microbial community composition to identify various niches in prairie wetland ponds, sediments had higher microbial abundance but lower phylogenetic diversity in ponds with lower concentrations of dissolved organic carbon ([DOC]; 10-18 mg/L) and sulfate ([SO ]; 37-58 mg/L) in water.
View Article and Find Full Text PDFPlant Dis
January 2025
University of California Davis, Plant Pathology, 1 Shields Ave, Davis, California, United States, 95616;
While recycling irrigation water can reduce water use constraints and costs in nurseries, adoption is hindered by the associated risk of recirculating and spreading waterborne pathogens. To enable regional water re-use, this study assessed oomycete re-circulation risks and recycled water treatment efficacy at organismal and community scales. In culture-based analysis of recycled pond water at two Mid-Atlantic nurseries across three years, diverse oomycetes (12+ species) were detected using culture-based analysis, with Phytopythium helicoides as the dominant species; MiSeq analysis detected eight of these species, plus 24 additional taxa.
View Article and Find Full Text PDFProtist
January 2025
Chiba Institute of Science, 3 Shiomi-cho, Choshi, Chiba 288-0025, Japan. Electronic address:
Stentor pyriformis is a unicellular organism whose inherent green-algal symbionts can be utilized in evolutionary and cytological studies. The cytoplasm contains symbiotic algae and starch granules, which are in constant motion. The habitats of the ciliate S.
View Article and Find Full Text PDFSci Rep
January 2025
Faculty of Frontiers of Innovative Research in Science and Technology (FIRST), Konan University, Chuo-ku, Kobe, 650-0047, Hyogo, Japan.
Environmental pollution caused by heavy metals are problems worldwide. In particular, pollution and poisoning by lead ions (Pb) continue to be common and serious problems. Hence, there is a need for a widely usable method to easily detect Pb from solutions containing organic materials from environmental water such as seas, ponds, etc.
View Article and Find Full Text PDFLuminescence
January 2025
Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt.
The environmental impact of chemicals used in aquaculture, particularly nitrofurantoin, has raised global concern. Nitrofurantoin, a broad-spectrum antimicrobial, is commonly used in aquaculture despite safety risks. Determination of nitrofurantoin in water samples of fish ponds is necessary to ensure the safety and quality of seafood.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!